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GROWTH OF SOLIDS AND EVOLUTION OF MICROSTRUCTURES

Extremum principles for biological continuous bodies undergoing

volumetric and surface growth
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Abstract. The volumetric and surface growth of continuum solid bodies is considered, in the framework of the thermodynamics of open

systems exchanging mass, work and chemical species (nutrients) with their environment. More specifically, we address the issue of setting

up extremum principles for such growing bodies. A general three-field variational principle is set up, based on the so-called zero potential,

which is a byproduct of the grand potential. The stationnarity conditions of those potentials deliver balance laws for generalized volumetric

and surface Eshelby tensors, leading further to the identification of the material forces for growth.
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1. Introduction

Growth of biological tissues has attracted the attention of sev-

eral researchers in continuum mechanics within the last two

decades [1–9]. The most advanced works treat the interac-

tions between the mechanical equilibrium and the transport

phenomena leading to growth, see [10, 11] using the the-

ory of mixtures, or [12] highlighting the coupling between

reaction-transport of solutes and mechanics.

While most of the efforts have been spent on the mod-

eling of volumetric growth, fewer works deal with surface

growth, which from a conceptual point of view introduces

the additional difficulty of a changing number of particles, in

comparison with volumetric growth (an assumption of con-

stant particle numbers is made there, considering that either

the density or local volume do change instead). A unifying

framework for the treatment of both bulk and surface growth

phenomena has been proposed in [13], relying on the introduc-

tion of configurational forces as the internal driving forces for

growth. Configurational forces for surface growth have been

identified in [14], with application to bone remodeling.

While most of the growth models are devoted to writ-

ing evolution laws for kinematic like variables related to the

growth process (growth tensor), the generalization of varia-

tional principles to account for the multiphysical phenomena

occurring during growth has not been achieved so far. The

main objective of this contribution is then to set up extremum

principles for continuum solid bodes submitted to growth,

considering successively volumetric and surface growth. This

last situation differs from volumetric growth by the consider-

ation of a specific material behavior of the growing surface.

Since biological tissues are open systems exchanging nu-

trients with their environment, it is quite natural to adopt the

umbrella of the thermodynamics of open systems, allowing

incorporating the various kinds of energies growing bodies

are exchanging. We thereby advocate a novel contribution,

especially the writing of new extremum principles for grow-

ing solid bodies involving generalized Eshelby stresses. This

will extend the writing of nonlinear elasticity extremum prin-

ciples involving the standard mechanical Eshelby stress [17].

Regarding notations, vectors and second order tensors will be

denoted as boldface symbols.

2. Extremum principle for volumetric growth

We consider a representative tissue element (chosen at least

one order of magnitude larger than the typical size of the

heterogeneities, and at least one order of magnitude small-

er than the macroscopic size of the body) as an open het-

erogeneous system exchanging work, mass and heat with its

surrounding. The field variables are the absolute temperature

θ(x, t), the entropy density s(x, t), the transformation gradi-

ent F(x, t), the chemical potentials {µk(x, t)}k=1..N and the

number of moles (densities) of the N chemical species (nu-

trients) {nk(x, t)}k=1..N . The position x is introduced as a

label of the material particles which occupy a finite volume

in space.

As a starting point, the grand potential, a quantity used

in statistical mechanics particularly for irreversible processes

occurring in continuous open systems [15], is introduced in

terms of its spatial density

ωvol = ωvol (θ (x, t) ,F (x, t) , µk (x, t))

:=

∫
T : dF +

∫
F : dT

(1)

ωvol is the sum of the strain energy density

W0 = W0 (F) :=

∫
T : dF

and the complementary strain energy density

W c
0 (T) :=

∫
F : dT,
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with T := ∂Fω the first Piola-Kirchhoff stress (the listed ar-

guments of ωvol will be justified later on). The previously

defined densities W0 (F) and W c
0 (T) represent the area be-

low and above the curve T = T (F) respectively; hence, ωvol
expresses as

ωvol [θ,F, µk] = T : F (2)

assuming the existence of a strain and stress free reference

state.

Introducing next the internal energy density e (F, s, nk),
the generalized fundamental Euler’s relation traducing the ho-

mogeneity of degree one of e (F, s, nk) writes as [16]

e (F, s, nk) = T (F, s, nk) :

F + θ (F, s, nk) s− µk (F, s, nk)nk.
(3)

Observe that the mechanical contribution of the internal ener-

gy density, viz the scalar T (F, s, nk) : F, incorporates both

the strain energy and the complementary strain energy densi-

ties.

Consideration of (3) then leads to the rewriting of (2) as

ωvol [θ,F, µ] = e (F, s,n) − θ (F, s,n) s

−µk (F, s,n) .nk
(4)

in which the convention of summation of the repeated index

is adopted.

From the Gibbs and Gibbs-Duhem relations and using

(4), the differential of the grand potential is obtained from a

straightforward calculation

dωvol = −sdθ + T : dF − nkdµk

≡ T : dF + F : dT
(5)

resulting in the thermodynamic relations

∂ωvol

∂θ
= −s;

∂ωvol

∂F
= T;

∂ωvol

∂µk
= −nk

(6)

highlighting θ,F, µk as the arguments of ωvol; those consti-

tutive like relations shall be called state laws in the sequel.

The contributions on the r.h.s. of dωvol in (5) are successively

the quasi-static heat flux, the incremental work of the internal

stresses and the so-called quasi-static chemical work [16].

A variational principle for volumetric growth is next con-

structed. From the static equilibrium equation of the tissue

element submitted to body forces f0

∇X .T + f0 = 0 (7)

the definition of the transformation gradient F := ∇Xx, and

an integration by part, a weak formulation linking the inte-

gral of ω on a control volume V to contributions involving

the applied loading (body forces and surface tractions T.N)
is obtained in a straightforward manner:

∫

V

ωvoldV =

∫

V

f0.ψdV +

∫

∂V

(T.N) .ψdS (8)

with ψ a kinematically admissible position field. The bound-

ary ∂V is partitioned into a subpart Sψ with imposed place-

ment ψd and a complementary part St with imposed tractions

T
d, according to

∫

V

ωvoldV =

∫

V

T : FdV

=





∫

V

f0.ψdV +

∫

St

(
T
d.N

)
.ψdS





+

∫

Sψ

(T.N) .ψddS ≡WT +Wψ

(9)

introducing therein the works of the imposed body forces and

tractions WT and the work of the imposed placements, viz

the quantity Wψ =

∫

Sψ

(T.N) .ψddS.

The Gibbs-Duhem relation allows expressing one of the

intensive variables in the triplet (θ,T, µk) vs. the two remain-

ing variables. Using (8), a Legendre transform of ω versus the

work terms gives a new potential, which identically vanishes,

called for this reason the zero potential, elaborated as

Ω [θ, ψ, µk] :=

∫

V

ωvoldV

−





∫

V

f0.ψdV +

∫

St

(
T
d.N

)
.ψdS





−

∫

Sψ

(T.N) .ψddS ≡ 0.

(10)

Observe that the zero potential constructed thereabove is the

tensorial generalization of the zero potential [15], accounting

for the boundary conditions over the tissue element.

Since the zero potential is nil, it enjoys the property of

extremality

δΩ [θ, ψ, µk] = 0 (11)

for the solution field, the set of primary variables (θ, ψ, µk)
at thermodynamic equilibrium; this condition holds whatever

the state laws is. Thereby, a generalized potential energy in a

thermodynamic framework has been set up, allowing for the

consideration of the thermal and chemical forms of energy, in

addition to the mechanical energy.

It is worth noting that the stress has been substituted by

the temperature and chemical potential as new control vari-

ables: it is thus not possible to control the stress, and essen-

tial boundary conditions on the portion of surface St have to

be prescribed in the formulation of the associated extremum

principle, namely

T.N = td on S0t. (12)

The material variation of the potential Ω [θ, ψ, µk] is next

calculated to express the stationnarity condition (at fixed ma-

terial position: the index X is dropped in the variation, hence

δ ≡ δX) following the steps:
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1. The material variation of ω is formulated as

δωvol = δωvol (θ,F = ∇Xψ, µk)

≡
∂ωvol

∂∇Xψ
: δ (∇Xψ) +

∂ωvol

∂θ
δθ +

∂ωvol

∂µk
δµk.

(13)

2. The first contribution on the right hand side is integrated

by part in the corresponding integral term in Ω [θ, ψ, µk], by

a standard calculation in configurational mechanics, thereby

highlighting the Eshelby stress built from the grand potential,

defined as

Σ := ωvolI − F
T .T (14)

3. The variations of the spatial position, temperature and

chemical potential in previous expression are further ex-

pressed as

δxψ + F.δxX = 0; δθ = ∇Xθ.δX; δµk = ∇Xµk.δX

Assembling the calculations in those three steps delivers the

material variation of the zero potential

δΩ [θ, ψ, µk] =

∫

V

Div (−Σ − (sθ + nkµk) I).δXdX

−

∫

V

(θDiv (sI) + µkDiv (nkI)).δXdX

+

∫

V

(∂XW0)exp l.δXdX +

∫

V

F
T.f0.δXdX

+

∫

St

∂ω

∂∇Xψ
.N.δψdS−

∫

St

t
d.δψdS

−

∫

Sψ

δ (T.N) .ψddS.

(15)

The Eshelby stress defined in (14) and involved in (15) incor-

porates the density of the grand potential, sum of the strain

energy density W0(F) and of the complementary energy den-

sity Wc(T); it thus differs from the classical version, which

relies on W0(F) exclusively. One should note that the com-

plementary energy density should ideally be based on true

tensors (like the second Piola-Kirchhoff stress and its conju-

gated strain measure in the sense of energy).

The volumetric contribution in (15) is then identified as

δΩvol = 0 ⇒ DivΞ + (θ∇Xs+ µk∇Xnk)

+F
T .f0 = 0

(16)

introducing therein the following energy momentum tensor in

a thermodynamic context

Ξ := −Σ − (sθ + nkµk) I. (17)

This energy momentum tensor incorporates all forms of en-

ergies (mechanical through the classical Eshelby stress [17]

Σ := F
T .T−W I, and thermal and chemical forms in the last

isotropic contribution), in line with [18, 19] who introduced

more general internal variables in place of the chemical vari-

ables. Expressions of various energy momentum tensors in-

cluding the so-called strain energy per unit stress-free volume

(at fixed temperature and molar concentrations), have been

proposed, see ([20, 21], Eqs. (45), (46)); the reader is also

referred to the pioneering work [22] related to those tensors.

The balance law (16) is supplemented by the natural

boundary conditions

td =
∂ω

∂∇Xψ
.N. (18)

Summarizing, a complete model of volumetric growth has

been elaborated, formalized as the closed set of equilibrium

equations (16) with boundary conditions (18), and constitu-

tive behavior formally given by the dependency of the spatial

density of the grand potential ωvol versus its arguments, as

written in the state laws (6). This thermodynamic framework

is further extended to account for situations in which surface

growth is of importance, in addition to volumetric growth.

3. Thermodynamic potential for surface

and bulk growth and extremum principle

Independently from the volumetric contribution, one shall also

consider an additional surface potential with (surface) densi-

ty ωsurf

[
θ̃, F̃, µ̃

]
; this last contribution is the surface grand

potential and is identified from the superficial excess quantity

associated to dωsurf , viz

dωsurf ≡ dωσ = −sσdθ − nσkdµk + T̃
el : dF̃. (19)

It involves surface elastic stresses and conjugated strains, de-

noted as the quantities T̃
el, F̃ respectively. Gibbs (1928) point

of view of excess quantities at the interface between two phas-

es has herewith been adopted (there is in Gibbs point of view

no extra volume of the interface separating the two phases).

The surface excess

ωσ = T̃
el : F̃ (20)

is the surface counterpart of (2). Equality (19) shows that the

true thermodynamic arguments of ωsurf are the (surface tem-

perature), the superficial chemical potential and the surface

strain. This last quantity may be chosen as an independent

field or as the surface projection of F.

The integration over a control volume (control surface re-

sp.) of the densities ωvol [θ,F, µ] (ωsurf

[
θ̃, F̃, µ̃

]
resp.) fur-

ther satisfies the identity
∫

Ωg

ωvol [θ,F, µ]dXg +

∫

Sg

ωsurf

[
θ̃, F̃, µ̃

]
dσg

=

∫

Ωg

T : FdXg +

∫

Sg

T̃
el : F̃dσg

(21)

fully expressed in the reference configuration. The right-hand

side of previous equality involves the strain energy and com-

plementary strain energy (they sum up to T : F and T̃
el : F̃

regarding the volumetric and surface contributions respective-

ly) for both the bulk and the surface.

The Gibbs adsorption equation may further be written

Sσdθ +Adg + nσi dui = 0

Bull. Pol. Ac.: Tech. 60(2) 2012 261



J.F. Ganghoffer

as the surface counterpart of Gibbs-Duhem relation in classi-

cal thermodynamics [16].

The extension of the global energy balance (10) involving

additional surface contributions then writes

∫

Ωg

ωvol [θ,F, µ]dXg +

∫

Sg

ωsurf

[
θ̃, F̃, µ̃

]
dσg

=

∫

Ωg

f0.ψdXg +

∫

∂Ωg

(T.N) .ψ̃dσg

+

∫

∂Ωg

(
T̃
el.N

)
.ψ̃dσg +

∫

Sg

FS .ψ̃dσg

=

∫

Ωg

f0.ψdXg +

∫

SgT

(T.N)
d
.ψ̃dσg

+

∫

Sgψ

(T.N) .ψ̃ddσg +

∫

Sg

FS .ψ̃dσg

+

∫

∂Sg

(
T̃
el.νg

)
.
˜̃
ψdσg ,

(22)

whereby a partition of the boundary has been made ac-

cording to the nature of the boundary conditions (tractions

(T.N)
d

imposed on Sgt; position imposed on Sgψ, with

Sgt∪Sgψ = ∂Ωg, Sgt∩Sgψ = ∅). The surface and line forces,

respectively FS , and T̃.νg appear in (22) as dual (in the sense

of the work of external forces) to the position variables x̃, ˜̃x, ˜̃x
respectively, using the notations of the introductory section.

Based on the last equality in (22), a zero potential

Z [θ,F, µ] is elaborated as

Z [θ,F, µ] :=

∫

Ωg

ωvol [θ,F, µ]dXg

+

∫

Sg

ωsurf

[
θ̃, F̃, µ̃

]
dσg −

∫

Ωg

f0.ψdXg

−

∫

SgT

(T.N)
d
.ψ̃dσg −

∫

Sgψ

(T.N) .ψ̃ddσg

−

∫

Sg

fS .ψ̃dσg −

∫

∂Sg

(
T̃.νg

)
.
˜̃
ψdσg ≡ 0.

(23)

Since the potential Z [θ,F, µ] always vanishes, it is naturally

endowed with an extremality property

δZ [θ,F, µ] = 0. (24)

The variation of Z [θ,F, µ] writes after a few transforma-

tions involving the surface divergence theorem as (dropping

here the arguments of the volumetric and surface densities for

simplicity)

δZ [θ,F, µ]=

∫

Ωg

(−s∇θ − nk∂nkµk∇nk + f0) .δXgdXg

+

∫

Sg

[(
−sσ∇Sθ − nσk∂nσkµk∇Sn

σ
k

)
I + ∇S .Σ̃

−P.Kt.∂Nωsurf + N.Σ
]
.δXSdσg

+

∫

∂Ωg

ωvolN.δXSdxg −

∫

Sg

fS .δXSdσg

−

∫

Sgt

(T.N)
d
.δXSdσg −

∫

∂Sg

(
T̃.νg

)
.δ

˜̃
XSdσg

+

∫

∂Sg

ωsurfδ
˜̃
XS .νgdlg ≡ 0

(25)

assuming a nil prescribed position field and neglecting the

variation of the surface stresses (the applied loads have been

considered as dead loads). The equilibrium equations in strong

form are obtained as a result of the arbitrariness and indepen-

dence of the variations δxg, δXS in (25):

−s∇θ − nk∂nkµk∇nk + ∇.Σ + f0 = 0 in Ωg, (26)
(
ωvol − sσ∇Sθ − nσk∂nσkµk∇Sn

σ
k

)
N

+∇S .Σ̃ − P.Kt.∂Nωsurf + fS = 0 on Sg\Sgt
(27)

with boundary conditions
(
−sσ∇Sθ − nσk∂nσkµk∇Sn

σ
k

)
+ ∇S .Σ̃

−P.Kt.∂Nωsurf + ωvolN = (T.N)
d
,

(28)

ωsurfνg = T.νg ⇒ ωsurf = νg.T.νg on ∂Sg. (29)

The factors of the variations δxg and δXS in (25) may be

identified as material driving forces for growth (in the sense

of configurational mechanics [17], since those variations rep-

resent virtual growth velocities; focusing on surface growth,

the material surface driving force is then identified from (25)

as
Υ̃ =

(
−sσ∇Sθ − nσk∂nσkµk∇Sn

σ
k

)
IS

+∇S .Σ̃− P.Kt.∂Nωsurf − fS + ωvolN.
(30)

As only the normal contribution can be considered as the true

driving force, calculations similar to [24] lead to the normal

projection of Υ̃ as

Υ̃gN := Υ̃.N = N.Σ.N + Σ̃ : K + ∇S .(Σ̃.N)

−
(
sσ∇Sθ + nσk∂nσkµk∇Sn

σ
k

) (31)

with the volumetric and surface Eshelby stress and curvature

tensor given successively by

Σ := F
t.T − ωvol [θ,F, µ] I;

Σ̃ := F̃
t.T̃ − ωsurf

[
θ̃, F̃, µ̃

]
IS ;K := −∇RN.

(32)

It is important to note that both the volumetric and sur-

face densities, respectively the scalar functions ωvol, ωsurf ,

account for all forms of energies (mechanical, thermal and
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chemical), as reflected in the right hand side of (6) and (19).

Especially, the surface driving force in (30) incorporates cur-

vature effects (first term), a mechanical driving force (second

and third term, also partly included in the bulk contribution),

and a thermal and chemical contribution (part of ωvol and

ωsurf , and last parenthesis).

4. Conclusions

General extreme principles have been established for contin-

uum solid bodies undergoing simultaneously volumetric and

surface growth, under the umbrella of open systems thermo-

dynamics, resulting in volumetric and surface growth mod-

els when the stationnarity conditions are expressed. The re-

sulting balance laws, Eqs. (16) through (18) for volumetric

growth and (26)–(29) for surface growth, highlight the mater-

ial driving forces for growth, based on volumetric and surface

Eshelby stresses, respectively the normal projection of Eshel-

by stress identified in (17) and (30). This general framework

opens the way for modeling situations of combined surface

and volumetric growth, or volumetric growth per se with an

additional surface energy contribution. The balance laws for

the volumetric and surface Eshelby like stresses form the basis

for the writing of evolution laws for the kinematic variables

associated to growth phenomena.

Further work considering growth models within the frame-

work of topology optimization is also under progress.
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