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Abstract. In this paper we consider the problem of efficient control of inventory systems with perishable goods. In the analyzed setting the

deteriorating stock at a distribution center used to fulfill unknown, time-varying demand is replenished with delay from a supply source. The

challenging issue is to achieve the high service level with minimum costs when the replenishment orders are procured with lead-time delay

spanning multiple review periods. On the contrary to the typical heuristic approaches, we apply formal methodology based on discrete-time

sliding-mode (SM) control. The proposed SM controller with the sliding plane selected for a dead-beat scheme ensures that the maximum

service level is obtained in the system with arbitrary delay and any bounded demand pattern. In order to account for the supplier capacity

limitations in the systems with input constraints, we also develop an alternative control strategy based on reaching law. Both controllers

achieve a given service level with smaller holding costs and reduced order-to-demand variance ratio as compared to the classical order-up-to

policy.
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1. Introduction

An appropriate inventory management policy is crucial for ef-

ficient operation of production and logistic systems [1]. Due

to the similarity between the considered class of systems and

engineering processes, it is a natural choice to apply control-

theoretic methods in the design and analysis of strategies gov-

erning the flow of goods. However, it follows from the exten-

sive review papers documenting the research work in the field

[2–7] that certain areas of inventory control are not sufficiently

addressed at the formal design level. The deficiency of appli-

cation of systematic control approaches concerns in particular

a large and very important class of problems related to the

management of perishable commodities. Indeed, many prod-

ucts, such as food, drugs, gasoline, etc., lose market value over

time, deteriorate due to the changes in chemical structure, or

even become obsolete (as for instance the components in the

high-tech industry). The primary difficulty in developing con-

trol schemes for perishable inventories is the enlarged state

space required for conducting the exact analysis of product

lifetimes. The situation aggravates when the product demand

varies rapidly in subsequent review periods and inventories

are replenished with nonzero delay, which frequently happens

in modern supply chains. In such circumstances, in order to

meet the service level requirements at low costs, when mak-

ing the ordering decision it is necessary not only to account

for the demand during procurement latency but also for the

stock deterioration in that time.

There are very few successful design examples based

on formal control methods for perishable inventory systems.

Bensoussan et al. [8] considered a continuous-time system

with deterministic and stochastic deterioration rates and ze-

ro lead-time. The authors of [8] used distributed parameter

systems theory to find a quadratically-optimal replenishment

rule. However, the analytical solution can be determined on-

ly provided that demand is known. In papers [9, 10], linear-

quadratic optimization is performed for an undelayed process.

Rodrigues and Boukas [11] design a piecewise affine control

law for a production system with deteriorating on-hand inven-

tory and zero lead-time. In [12], a robust controller for the

continuous system with uncertain processing time and delay

in control is designed by minimizing an H∞-norm. However,

the implementation of the strategy proposed in [12] requires

numerical procedures for obtaining the control law parameters

which limits its tractability at the analytical level.

In this paper, we apply control-theoretic methodology to

develop a new supply policy for periodic-review inventory

systems with perishable goods. In the considered systems, the

on-hand stock at a distribution center is used to fulfill an un-

known, time-varying demand placed by customers. The stock

deteriorates exponentially at a constant rate and is replenished

with delay from a remote supply source. We assume that de-

lay (lead-time) can span multiple review periods. The design

objective is to obtain high service level with minimum on-

hand inventory. For this purpose, we propose discrete-time

sliding-mode (SM) control, which is well known to be effi-

cient and robust regulation technique [13–19]. Since a proper

choice of the switching plane is the key part of the design

of SM controllers [20–25], in this work, we determine the

plane parameters for a dead-beat scheme. In this way we ob-

tain fast response to the changes in demand and the minimum

stock level. In contrast to the majority of solutions reported

previously in literature for perishable goods, we adopt a for-

mal design approach. Moreover, as opposed to our earlier
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works devoted to the traditional inventory systems (i.e. the

systems with nondeteriorating stock) [26, 27], we explicit-

ly consider here the decaying inventories, which constitute

a different and more complex class of objects in supply chain

dynamics [4]. We solve the design problem analytically and

obtain the control algorithm expressed in a closed-form. The

closed-form solution allows us to define and strictly prove

a number of advantageous properties of the proposed con-

trol scheme. In particular, we show that under the proposed

policy the available stock is never entirely depleted despite

unpredictable demand variations, which guarantees the maxi-

mum service level (full demand satisfaction from the readily

available resources). We also specify a precise value of the

storage space which should be reserved at the distribution cen-

ter to always accommodate all the incoming shipments. This

means that the potential necessity of expensive emergency

storage outside the company premises is eliminated. Finally,

we show that the order quantities generated by the present-

ed controller are always nonnegative and bounded, which is

required for the practical implementation of a replenishment

rule. Since a dead-beat scheme typically generates large con-

trol signals in the initial phase of the control process which

can be difficult to realize in practice due to supplier limi-

tations, we propose another SM controller which allows for

satisfying the input constraints without downgrading the sys-

tem dynamics. The modified, nonlinear controller designed

for the systems with supply source limitations is based on the

concept of reaching law [28, 14–16] in the form proposed

in [17]. The nonlinear controller is shown to provide a sim-

ilar set of properties as the first, linear strategy, in particular

it permits to achieve the maximum service level, yet it meets

the input constraint imposed by a saturating supply source.

We compare the proposed inventory policies with the classi-

cal order-up-to (OUT) one both analytically and in numerical

experiments. Our ordering rule outperforms the OUT poli-

cy in the analyzed system with perishable goods in terms of

smaller storage space requirements, higher service level and

reduced order-to-demand variance ratio.

The paper is organized in the following way. Firstly, in

Sec. 2, we describe the model of inventory system with perish-

able goods. Then, in Sec. 3, we state the control problem and

design a discrete-time SM controller with the sliding plane

selected for a dead-beat scheme. We discuss its properties

at the analytical level, and provide formal proofs of the im-

portant characteristics related to handling the flow of goods.

Next, we present the SM controller design based on the con-

cept of reaching law for the systems with input constraints.

In Sec. 4, we compare our approach with the classical OUT

policy. Finally, we present simulation results in Sec. 5, and

give conclusions and managerial insights in Sec. 6.

2. Problem formulation

We analyze the inventory system, in which the stock used to

satisfy an unknown, bounded, time-varying demand is replen-

ished from a single supply source. Such setting, illustrated in

Fig. 1, is frequently encountered in production-inventory sys-

tems where a common point (distribution center), linked to

a factory or external, strategic supplier, is used to provide

goods for another production stage or a distribution network.

The task is to design a stable control strategy which will min-

imize lost service opportunities (occurring when only a part

of the imposed demand can be satisfied from the stock avail-

able at the distribution center). The design procedure should

on one hand explicitly consider the delay between placing of

an order at the supplier and goods arrival at the center and

on the other it should take into account the stock reduction of

perishable commodities during this lead-time delay.

Fig. 1. Inventory system with a strategic supplier

Fig. 2. System model
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The model of the analyzed periodic-review system is il-

lustrated in Fig. 2. The stock replenishment orders u are is-

sued at regular intervals kT, where T is the review period

and k = 0, 1, 2, . . .. The order quantity is calculated on the

basis of the current stock level y(kT ), the stock reference val-

ue yref , and the order history. Each non-zero order placed

at the supplier is realized with lead-time Lp assumed to be

a multiple of the review period, i.e. Lp = npT , where np

is a positive integer. The saturating integrator in the inter-

nal loop represents the operation of accumulating the stock

of perishables characterized by decay factor σ, 0 ≤ σ < 1.

The imposed demand (the number of items requested from

inventory in period k) is modeled as an a priori unknown,

bounded function of time d(kT ), 0 ≤ d(kT) ≤ dmax. Notice

that this definition of demand is quite general and it accounts

for any standard distribution typically analyzed in the consid-

ered problem. If there is a sufficient number of items in the

warehouse to satisfy the imposed demand, then the actually

met demand h(kT ) (the number of items sold to customers

or sent to retailers in the distribution network) will be equal

to the requested one. Otherwise, the imposed demand is sat-

isfied only from the arriving shipments, and the additional

demand is lost (we assume that the sales are not backordered,

and the excessive demand is equivalent to a missed business

opportunity). Thus,

0 ≤ h(kT ) ≤ d(kT ) ≤ dmax. (1)

For the considered system with perishable inventory the

stock balance equation can be presented in the following form

y[(k + 1)T ] = ρy(kT ) + uR(kT ) − h(kT ), (2)

where uR(kT ) is the order received in period k and ρ = 1−σ
represents the fraction of stock which remains in the ware-

house when inventory deteriorates at rate σ. For instance, if

σ = 0.05, then 5% of the stock perishes in each review period

and ρ = 0.95, or 95%, of the stock remains. Note that since

0 ≤ σ < 1 we have

0 < ρ ≤ 1. (3)

We assume that the warehouse is initially empty, i.e.

y(kT) = 0 for k < 0, and the first order is placed at

kT = 0. Because of lead-time delay, the first order arrives

at the distribution center in period np, and y(kT) = 0 for

k ≤ np. We assume that the goods arrive at the distribution

center new and deteriorate when kept in the on-hand stock.

Taking into account the initial conditions and the fact that

uR(kT) = u[(k−np)T ], the stock level for any k ≥0 may be

calculated from the following equation

y(kT ) =

k−1
∑

j=0

ρk−1−juR(jT ) −

k−1
∑

j=0

ρk−1−jh(jT )

=

k−1
∑

j=0

ρk−1−ju[(j − np)T ] −

k−1
∑

j=0

ρk−1−jh(jT )

=

k−np−1
∑

j=0

ρk−np−1−ju(jT )−

k−1
∑

j=0

ρk−1−jh(jT ).

(4)

In order to save on notation in the remainder of the paper

we will use k as the independent variable in place of kT.

The considered discrete-time system can also be described

in the state space as

x(k + 1) = Ax(k) + bu(k) + vh(k),

y(k) = qT x(k),
(5)

where x(k) = [x1(k) x2(k) . . . xn(k)]T is the state vector

with x1(k) = y(k) representing the on-hand stock level in

period k and xj(k) = u(k − n + j − 1) for any j = 2, . . . , n
equal to the delayed input signal u; A is n × n state matrix,

b, v, and q are n × 1 vectors

A =

















ρ 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0

















, b =

















0

0
...

0

1

















,

v =

















−1

0
...

0

0

















, q =

















1

0
...

0

0

















,

(6)

and the system order n = np +1 = Lp/T +1 depends on the

review period and lead-time Lp. The desired system state is

defined as

xd =

















xd1

xd2

...

xdn−1

xdn

















=

















1

1 − ρ
...

1 − ρ

1 − ρ

















yref , (7)

where yref denotes the reference stock level. Consequently,

the control objective is to stabilize the first state variable (the

on-hand stock) at the level yref . Since the goods perish at the

rate 1 − ρ while kept in the warehouse, in order to maintain

the on-hand stock at the desired level once yref is reached,

it needs to be refilled from the incoming shipments equal to

(1 − ρ)yref in the steady state. Therefore, based on (2), all

the state variables which represent the in-bound shipments

x2, . . . , xn, should be equal to (1−ρ)yref once y(k) = yref .

In a latter part of the paper we develop a control strategy

which meets these design objectives. We will also show how

to choose a suitable reference stock level such that a num-

ber of advantageous properties in the considered system is

achieved.

3. Proposed inventory policy

In this section we design a controller for the inventory system

with perishable goods (5)–(6) following a rigorous control

approach based on discrete sliding modes. First, the design
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procedure is conducted with the crucial part devoted to the

selection of the sliding plane for a dead-beat scheme. The

properties of the obtained control law are formulated and

strictly proved. Next, in order to comply with possible suppli-

er capacity limitations we propose another control structure,

designed using reaching law approach. The improved nonlin-

ear controller is shown to maintain the favorable properties of

the linear dead-beat scheme, and additionally it ensures that

input constraint is never violated. Finally, a comparison with

the classical OUT policy is performed and the benefits of our

approach are discussed at the analytical level.

3.1. Dead-beat SM controller design. Let us denote the

closed-loop system error as e(k) = xd − x(k). We introduce

a sliding hyperplane described by the following equation

s(k) = cT e(k) = 0, (8)

where cT = [c1 c2 . . . cn] is the vector describing the slid-

ing plane such that cT b 6= 0. Substituting (5) into equation

cT e(k + 1) = 0, the following feedback control law can be

derived

u(k) = (cT b)−1cT [xd − Ax(k)]. (9)

Using (6) we can rewrite (9) as

u(k) = c−1
n







yref



c1 + (1 − ρ)

n
∑

j=2

cj



−

− c1ρx1(k) −

n
∑

j=2

cj−1xj(k)







.

(10)

It is clear from (10) that the controller properties will be

determined by an appropriate choice of the sliding plane pa-

rameters c1, c2, . . . , cn. Since typically in inventory control

it is favorable to provide fast reaction to varying market con-

ditions, we intend to find such parameters of the plane which

will allow for the error elimination in the smallest number of

steps after a change in demand.

The characteristic polynomial of the closed-loop state ma-

trix Ac = [In − b(cT b)−1cT ]A with control (10) applied is

determined as

det (zIn − Ac) = zn +
cn−1 − ρcn

cn

zn−1 + . . . +
c1 − ρc2

cn

z.

(11)

For a dead-beat control, the determinant det(zIn − Ac)
should be equal to zn, which is satisfied when

cn−1 = ρcn, cn−2 = ρcn−1, . . . ,

c2 = ρc3, c1 = ρc2.
(12)

Having solved recursively this set of equations we obtain the

following vector describing the parameters of the sliding plane

cT = [ρn−1 ρn−2 ρn−3 . . . ρ 1]cn. (13)

Substituting (13) into (10), we get the control law

u(k) = yref − ρnx1(k) −

n
∑

j=2

ρn−j+1xj(k) (14)

From (6) the state variables xj (j = 2, 3, . . . , n) may be

expressed in terms of the control signal generated at the pre-

vious n − 1 samples as xj(k) = u(k − n + j − 1). Since

x1(k) = y(k) and n = np + 1, we obtain

u(k) = yref − ρnp+1y(k) −
k−1
∑

j=k−np

ρk−ju(j). (15)

3.2. Properties of the proposed controller. Further in this

section the properties of inventory policy (15) will be given

in a lemma and three theorems. The lemma and the first theo-

rem show that the order quantities determined from the algo-

rithm are always nonnegative and bounded, which is a crucial

requirement for the practical implementation of any invento-

ry management scheme. The second proposition specifies the

warehouse capacity which needs to be provided to always ac-

commodate the on-hand stock and the incoming shipments.

Finally, the third theorem indicates how to select the reference

stock level in order to ensure full demand satisfaction from

the readily available resources.

First, notice that since it was assumed that u(k < 0) = 0,

and y(k ≤ 0) = 0, we have u(0) = yref . Afterwards, for

k ≥ 1, the control signal satisfies the relation given in the

following lemma.

Lemma 1. If policy (15) is applied to control the flow of

goods in system (5)–(6), then for any k ≥ 1

u(k) = (1 − ρ)yref + ρnp+1h(k − 1). (16)

Proof. Substituting (4) into (15), we get

u(k) = yref−

− ρnp+1





k−np−1
∑

j=0

ρk−np−1−ju(j) −

k−1
∑

j=0

ρk−1−jh(j)



−

−

k−1
∑

j=k−np

ρk−ju(j) = yref −

k−np−1
∑

j=0

ρk−ju(j)−

−

k−1
∑

j=k−np

ρk−ju(j) + ρnp

k−1
∑

j=0

ρk−jh(j) =

= yref −

k−1
∑

j=0

ρk−ju(j) + ρnp

k−1
∑

j=0

ρk−jh(j).

(17)

For k = 1, it follows immediately from (17) that

u(1) = yref − ρu(0) + ρρnph(0) =

= (1 − ρ)yref + ρnp+1h(0),
(18)

which shows that the lemma is indeed satisfied for k = 1.

Let us assume that (16) is true for all integers up to some
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l > 1. Using this assumption, from (17), the order quantity

generated in period l + 1 can be expressed as

u(l + 1) = yref −

l
∑

j=0

ρl+1−ju(j)+

+ ρnp

l
∑

j=0

ρl+1−jh(j)

= yref − ρ
l−1
∑

j=0

ρl−ju(j) − ρu(l)+

+ ρnp+1h(l) + ρnp+1

l−1
∑

j=0

ρl−jh(j) = yref − ρyref+

+ ρ



yref −

l−1
∑

j=0

ρl−ju(j) + ρnp

l−1
∑

j=0

ρl−jh(j)



−

− ρu(l) + ρnp+1h(l) = (1 − ρ)yref + ρu(l)−

− ρu(l) + ρnp+1h(l) = (1 − ρ)yref + ρnp+1h(l).

(19)

Since l is an arbitrary positive integer, we conclude that (16)

actually holds for any integer k ≥ 1. This ends the proof of

the lemma.

Theorem 1. The order quantities generated by policy (15)

are always bounded, and for any k ≥ 0 the ordering signal

satisfies the following set of inequalities

(1 − ρ)yref ≤ u(k) ≤

≤ max
{

yref , (1 − ρ)yref + ρnp+1dmax

}

.
(20)

Proof. It follows from relation (15) and the system initial

conditions that u(0) = yref , which means that the theorem is

satisfied for k = 0. On the other hand, since 0 ≤ h(·) ≤ dmax,

from Lemma 1 for any k > 0, we get

(1 − ρ)yref ≤ u(k) ≤ (1 − ρ)yref + ρnp+1dmax. (21)

This ends the proof.

The practical considerations of inventory management in

real systems dictate the requirement for ensuring finite ware-

house capacity that should be reserved at the distribution cen-

ter to accommodate the stock. The next theorem demonstrates

that the on-hand stock never exceeds yref . This means that in

order to provide the storage space for the goods at the center,

it suffices to assign the warehouse of capacity yref .

Theorem 2. If policy (15) is applied to control the flow of

goods in system (5)–(6), then the stock level is always upper-

bounded, i.e.

∀
k≥0

y(k) ≤ yref . (22)

Proof. The warehouse at the distribution center is empty for

any k ≤ np = n − 1. Hence, it suffices to show that the

proposition is satisfied for any k ≥ n. Let us assume that for

some integer l ≥ n, y(l) ≤ yref . We will demonstrate that

this assumption implies that the theorem is also true for l+1.

Based on the inventory balance equation (2) the stock level

in the l + 1 period can be expressed as

y(l + 1) = ρy(l) + u(l − np) − h(l). (23)

Applying (4) and (17), we get

y(l + 1) = ρy(l) + yref − ρ

l−np−1
∑

j=0

ρl−np−1−ju(j)+

+ ρnp+1

l−np−1
∑

j=0

ρl−np−1−jh(j) − h(l)

= ρy(l) + yref − ρy(l) −

l−1
∑

j=l−np

ρl−jh(j) − h(l)

= yref −

l
∑

j=l−np

ρl−jh(j).

(24)

Since h(·) is always nonnegative, y(l + 1) ≤ yref . Using

the principle of the mathematical induction we conclude that

the proposition is valid for any review period k ≥ 0.

It follows from Theorem 2 that if for the considered in-

ventory system the warehouse of size yref is assigned at the

distribution center, then all the incoming shipments can be

stored locally, and any cost associated with emergency stor-

age is eliminated. Apart from the efficient warehouse space

management, a successful inventory control strategy in mod-

ern supply chain is expected to achieve high service level. The

proposition formulated below shows how the reference stock

level should be selected so that all of the demand imposed on

the distribution center is satisfied from the readily available

resources, and the cost of lost sales is reduced to zero.

Theorem 3. If policy (15) is applied to control the flow of

goods in system (5)–(6), and the reference stock level satisfies

the following inequality

yref > dmax

np
∑

j=0

ρj , (25)

then for any k ≥ np + 1 the on-hand stock level is strictly

positive.

Proof. It follows from (1) that the realized demand is al-

ways upper bounded, i.e. for any integer k ≥ 0 the inequality

h(k) ≤ dmax holds. Consequently, taking into account (24)

and the theorem assumption (25) we have for k ≥ np + 1

y(k) = yref −
k−1
∑

j=k−1−np

ρk−1−jh(j) ≥

= yref − dmax

k−1
∑

j=k−1−np

ρk−1−j =

= yref − dmax

np
∑

j=0

ρj > 0.

(26)

This completes the proof of Theorem 3.
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Remark 1. The required warehouse capacity stated in Theo-

rem 3 is specified following the worst-case uncertainty analy-

sis (for an instructive insight how this methodology relates to

production-distribution systems see e.g. [3]). However, since

the value given in (25) scales linearly with demand, in the sit-

uation when the mean demand differs significantly from the

maximum one, it may be convenient to substitute dmax with

some positive dL < dmax. In such a case the 100% service

level is no longer ensured, yet the average stock level, and as

a consequence the holding costs, will be reduced.

3.3. Reaching-law-based SM controller design. A possible

drawback of the linear dead-beat controller (15) is the required

high initial order quantity which can be difficult to provide

by suppliers with capacity limitations. Therefore, in order to

maintain excellent dynamics offered by the dead-beat scheme,

and at the same time conform to the supplier limitations, a dif-

ferent structure needs to be applied. For this purpose we pro-

pose to use the concept of reaching law in the form proposed

by Golo and Milosavljević [17]. This reaching law allows us

to control the way the system representative point approaches

the sliding plane. As a consequence of applying the reaching

law, instead of requiring the point to reach the plane in one

step as it was assumed in the design of controller (15), the

reaching phase is extended over several periods thus reducing

the control effort necessary to cover large initial distance from

the plane. We will show that a properly selected reaching law

allows us to meet the input constraint

0 ≤ u(k) ≤ umax, (27)

where umax > (1 − ρ)yref + ρndmax, and at the same time

preserve good system dynamics provided by the dead-beat

control.

The reaching law described in [17] can be synthesized in

the following way

s(k + 1) − s(k) = −Φ[s(k)], (28)

where

Φ[s(k)] = min{|s(k)|, δ1|s(k)| + δ2}sgn[s(k)], (29)

0 ≤ δ1 < 1, and δ2 > 0. The sgn(x) function in (29) equals

either −1 or 1 depending on the value of argument x, i.e.

sgn(x) = −1 if x ≤ 0, and sgn(x) = 1 for x > 0. With this

reaching law applied the system representative point is guar-

anteed to reach the hyperplane s(k) = cT e(k) = 0 monoton-

ically in a finite number of steps in a way determined by the

choice of coefficients δ1 and δ2. For the purpose of further

analysis we can present (28)–(29) in the alternative way

s(k) = cT e(k) + f(k) = 0, (30)

where strictly monotonic function f(·) is defined as















f(k + 1) = (1 − δ1)f(k) − δ2sgn[s(k)]

for k < k0, k0 ∈ C+,

f(k + 1) = 0 for k ≥ k0.

(31)

Function f(·) represents the distance which remains to be cov-

ered by the representative point before it reaches the sliding

plane cT e(k) = 0.

We need to select parameters δ1 and δ2 such that input

constraint (27) is satisfied. Substituting (5) into cT e(k +1)+
f(k + 1) = 0, we arrive at

u(k) = (cT b)−1{cT [xd − Ax(k)] + f(k + 1)}. (32)

Applying (13) we get

u(k) = yref − ρnp+1y(k)−

−

k−1
∑

j=k−np

ρk−ju(j) + f(k + 1)/cn.
(33)

We assume that f(0) = −cT e(0) = −cnyref . Since f(·) is

strictly monotonic this assumption also implies that for any

k ∈ [0; k0) function f(·) and coefficient cn have opposite

signs. Before we decide on the choice of the reaching law

parameters, we state the relation between the control signal

established according to (33) and the realized demand h(·).

At the initial time we have

u(0) = yref + f(1)/cn. (34)

Afterwards, for k ≥ 1, the control signal satisfies the rela-

tion defined in Lemma 2.

Lemma 2. If policy (33) is applied to system (5)–(6), then

for any k ≥ 1

u(k) = (1 − ρ)yref + ρnp+1h(k − 1)+

+ [f(k + 1) − ρf(k)] /cn.
(35)

Proof. Similarly as in (17), substituting (4) into (33) yields

u(k) = yref −

k−1
∑

j=0

ρk−ju(j)+

+ ρnp

k−1
∑

j=0

ρk−jh(j) + f(k + 1)/cn.

(36)

For k = 1, from (36) we get

u(1) = yref − ρu(0) + ρρnph(0) + f(2)/cn =

= (1 − ρ)yref + ρnp+1h(0) + [f(2) − ρf(1)] /cn,
(37)

which shows that the lemma is indeed satisfied for k = 1. Let

us assume that (35) is true for all integers up to some l > 1.

Taking similar steps as presented in (19), the order quantity

generated in period l + 1 can be expressed as
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u(l + 1) = yref −
l

∑

j=0

ρl+1−ju(j)+

+ ρnp

l
∑

j=0

ρl+1−jh(j) + f(l + 2)/cn =

= yref − ρ

l−1
∑

j=0

ρl−ju(j) + ρρnp

l−1
∑

j=0

ρl−jh(j)−

− ρu(l) + ρρnph(l) + f(l + 2)/cn =

= yref − ρyref + ρu(l)− ρu(l) + ρρnph(l)−

− ρf(l + 1)/cn + f(l + 2)/cn =

= (1 − ρ)yref + ρnp+1h(l)+

+ [f(l + 2) − ρf(l + 1)] /cn.

(38)

Since l is an arbitrary positive integer, we conclude that (35)

actually holds for any integer k ≥ 1. This ends the proof of

the lemma.

The comparison of (31) and (35) indicates that a suitable

choice for δ1 is the decay factor σ = 1 − ρ. Consequently,

in order to complete the design of the reaching law, we need

to select δ2 such that u(k) never exceeds umax. Substituting

(31) into (35) with δ1 = 1 − ρ results in

u(k) =















(1 − ρ)yref + ρnp+1h(k − 1) − δ2sgn[s(k)]/cn

for k < k0,

(1 − ρ)yref + ρnp+1h(k − 1) for k ≥ k0.
(39)

It follows from (1) that 0 ≤ h(·) ≤ dmax. Therefore, since

n = np + 1, the control signal is nonnegative and bounded

by (1− ρ)yref + ρndmax < umax for any k ≥ k0. Obviously,

no request placed at the distribution center can be realized

until the first items arrive in period np, and h(k < np) = 0.

As a consequence, in order to ensure that condition (27) is

satisfied for all k < k0, taking into account (35) and (39), we

conclude that parameter δ2 should obey the following con-

straint

δ2 ≤ |cn| [umax − (1 − ρ)yref ]

for 0 ≤ k ≤ np,

δ2 ≤ |cn|
{

umax −
[

(1 − ρ)yref + ρnp+1dmax

]}

for k > np.

(40)

This ends the design of the reaching law. The obtained con-

troller calculates the order quantities to be placed at the sup-

plier from equation (33) with function f(·) defined by (35).

Parameters of function f(·) are selected as δ1 = 1− ρ and δ2

as the largest value satisfying inequalities (40). The properties

of the proposed nonlinear controller will now be formulated

as two theorems.

Theorem 4. If policy (33) is applied to system (5)–(6), then

the on-hand stock is always upper-bounded by yref .

Proof. The warehouse at the distribution center is empty for

any k ≤ np. Hence, it suffices to show that the proposition is

satisfied for all k > np. Using Lemma 2, the stock level (4)

can be presented as

y(k) = ρk−np−1u(0) +

k−np−1
∑

j=1

ρk−np−1−ju(j)−

−

k−1
∑

j=0

ρk−1−jh(j) = ρk−np−1yref + ρk−np−1f(1)/cn+

+

k−np−1
∑

j=1

ρk−np−1−j
[

(1 − ρ)yref + ρnp+1h(j − 1)
]

+

+

k−np−1
∑

j=1

ρk−np−1−j [f(j + 1) − ρf(j)] /cn−

−

k−1
∑

j=0

ρk−1−jh(j).

(41)

By manipulating the sums in (41), we obtain

y(k) = ρk−np−1yref + (1 − ρ)yref

k−np−1
∑

j=1

ρk−np−1−j+

+

k−np−1
∑

j=1

ρk−jh(j−1)−

k−1
∑

j=0

ρk−1−jh(j)+f(k − np)/cn =

= ρk−np−1yref +
(

1 − ρk−np−1
)

yref−

−

k−1
∑

j=k−np−1

ρk−1−jh(j) + f(k − np)/cn =

= yref −
k−1
∑

j=k−np−1

ρk−1−jh(j) + f(k − np)/cn.

(42)

Since the realized demand h(·) is always nonnegative, and

∀k f(k) and cn have opposite signs, y(k) given by (41) never

exceeds its demand value. This ends the proof.

Theorem 5. If policy (33) is applied to system (5)–(6), and

the reference stock level satisfies inequality (25), then for any

k ≥ n + k0 the stock level is strictly positive and demand is

entirely satisfied from the readily available resources.

Proof. It follows from (31) that for k > k0 function f(k) = 0.

Consequently, for k ≥ k0, the nonlinear controller (33) be-

comes equivalent to the linear control law (15), whose action

influences the stock level for k ≥ n + k0. Since both con-

trollers incorporate the order history in exactly the same way,

then taking into account relation (25), the proposition is valid

as a direct consequence of Theorem 3. This completes the

proof.
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Remark 2. By comparing Theorems 4 and 5 with Theorems 2

and 3, one can notice that nonlinear policy (33) imposes the

same storage space requirements for obtaining the maximum

service level as the linear dead-beat scheme (15). It follows

from Theorem 5 that the additional benefit of conforming to

the input constraint (27) demonstrated by the nonlinear con-

troller is obtained at the price of a possibly increased initial

period before the system reaches the state of all the sales

realized from the on-hand stock.

4. Relation to order-up-to policy

In the case when demand forecasting is not used, the clas-

sical OUT policy can be synthesized in the following way

(see e.g. [29] for a concise, comprehensive explanation of the

role of various components of typical inventory management

policies)

u(k) = yOUT − y(k) − Ω(k), (43)

where yOUT is the order-up-to level, y(k) is the current stock

value, and Ω(k) denotes the pending order (order placed but

not yet realized due to lead-time). Notice that in the consid-

ered system with fixed delay the pending order can be calcu-

lated by summing orders u(·) generated in the last np periods.

Therefore, Ω(k) =

k−1
∑

j=k−np

u(j), and the OUT policy can be

rewritten as

u(k) = yOUT − y(k) −
k−1
∑

j=k−np

u(j). (44)

Comparing strategy (15) with OUT policy (44) we can

notice a similar control structure which involves the measure-

ment of the current stock level and the calculations performed

on the order history. However, our scheme explicitly accounts

for the effect caused by deteriorating stock which is quantified

by the powers of ρ = 1 − σ. The characteristic polynomial

when strategy (15) is applied equals zn, which guarantees sta-

ble, oscillation-free closed-loop system performance. In turn,

the resultant characteristic polynomial when strategy (44) is

used in system (5)–(6) has the following form

zn + σ(zn−1 + zn−2 + . . . + z). (45)

Jury test [30] applied to (45) indicates that OUT policy

(44) maintains asymptotic stability for all σ ∈ [0, 1). How-

ever, oscillations cannot be avoided unless the decay factor

σ = 0. In order to notice this property, suppose that there

exists at least one stabilizing real root z0 ∈ (0, 1). Sub-

stituting z0 into (45) we get the sum of all positive terms

zn
0 + σ

n−1
∑

j=1

zj
0 > 0. Hence, all the nonzero roots of (45) are

negative real or complex which implies oscillatory response.

In consequence, the classical OUT policy is expected not only

to provide slower convergence to steady-state than our strat-

egy when used in the system with perishable inventory, but

additionally it may lead to oscillations which degrade the sys-

tem performance and increase economical costs. Notice also

that our strategy becomes equivalent to the classical OUT pol-

icy when applied to the system without perishables (ρ = 1).

As a result, when applied to the standard inventory system

with nondeteriorating stock, all the properties stated in the

theorems will be valid for the OUT policy with ρ set as one.

5. Numerical example

We verify the properties of the proposed SM policies (15)

and (33) in a series of simulation tests. The system parame-

ters are chosen in the following way: review period T = 1 day,

lead-time Lp = npT = 4 days, inventory decay factor

σ = 0.1, which implies ρ = 1 − σ = 0.9, and the maximum

daily demand at the distribution center dmax = 60 items. The

actual demand evolves according to the pattern illustrated in

Fig. 3, which reflects abrupt changes in a seasonal trend.

Fig. 3. Demand at the distribution center

We run two series of simulations. In the first series, it is

assumed that arbitrarily high order can be placed at the sup-

plier, whereas in the second one, we consider the case of the

supplier subject to capacity limitations of 70 items. Thus, in

the second series of simulations it is assumed that the order

may not exceed umax = 70 items. For the purpose of com-

parison we repeat the tests for the classical OUT policy. Two

different settings of the order-up-to level yOUT are considered:

in one simulation (curve (b) in the graphs) it is adjusted to

achieve the same service level as the SM policies, whereas in

the second test in each series of simulations yOUT is set such

that the policies result in the identical storage space assign-

ment (curve (c) in the graphs).

Test 1. In the first scenario we test the controller per-

formance in the situation of an unconstrained supply source

(umax = ∞). In order to ensure full demand satisfaction, ac-

cording to Theorem 3, the reference stock level for policy (15)

should be bigger than 246 items. We select yref = 250 items.

For the OUT policy we set two different order-up-to levels: in

the first simulation it is set as 380 items, whereas in the sec-

ond one it is adjusted to 290 items. The orders generated by

our controller (a) and the classical inventory policy (b) and (c)

are shown in Fig. 4, and the on-hand stock in Fig. 5. It is clear

from the graphs that the SM controller quickly responds to the

sudden changes in the demand trend without oscillations or

overshoots. Moreover, the on-hand stock level resulting from

the application of policy (15) does not increase beyond the
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warehouse capacity, and it never drops to zero after the ini-

tial phase which implies full demand satisfaction. The OUT

policy exhibits oscillations and requires bigger storage space

to accommodate the stock to achieve the same service level

(curve (b) in Fig. 5), which implies an increased holding cost.

On the other hand, if the safety stock level is reduced for the

OUT policy to maintain the same storage space requirements

as the ones imposed by our controller, the OUT service level

drops to 95%. In that case, curve (c) in the graphs, large os-

cillations appear in the ordering signal generated by the OUT

policy leading to the bullwhip effect, which is avoided by

our scheme. This clearly shows the benefits of application of

a formal methodology to the design of control schemes for

perishable inventory systems.

Fig. 4. Order quantities: a) policy (15), b) OUT policy (yOUT =

380 items), c) OUT policy (yOUT = 290 items)

Fig. 5. On-hand stock level: a) policy (15), b) OUT policy (yOUT =

380 items), c) OUT policy (yOUT = 290 items)

Test 2. In the second scenario, we assume that the suppli-

er cannot provide more goods in a single review period than

umax = 70 items. Since we deal with a saturating supply

source we apply controller (33) with the parameters of the

reaching law set as: δ1 = 1−ρ = 0.1, δ2 = 45 for 0 ≤ k ≤ 4,

and δ2 = 9.57 for k > 4 (calculated according to (40)).

For fair comparison we introduce a saturation element for

the OUT policy which does not permit the order quantity to

exceed 70 items. The orders generated by both policies are

shown in Fig. 6, and the on-hand stock in Fig. 7. It is evi-

dent from the plots that controller (33) conforms to the input

constraint and ensures full demand satisfaction with smaller

stock than the OUT policy (curve (b)). If the storage space

requirements of the OUT policy are reduced to a similar lev-

el as controller (33), the service level achieved by the OUT

policy decreases to 96%.

Fig. 6. Order quantities: a) policy (33), b) OUT policy (yOUT =

380 items), c) OUT policy (yOUT = 290 items)

Fig. 7. On-hand stock level: a) policy (33), b) OUT policy (yOUT =

380 items), c) OUT policy (yOUT = 290 items)

Fig. 8. Sliding variable: a) policy (15), b) policy (33)
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In Fig. 8 we show the evolution of the sliding variable

obtained in Test 1 (curve (a)) and 2 (curve (b)). We can see

that the system representative point reaches the sliding plane

cT e(k) = 0 in finite time, and never leaves a small band

around the plane afterwards. This means that the reaching

conditions are met, and, despite the presence of the external

mismatched disturbance, the stability of the quasi-sliding mo-

tion is ensured. In the case of controller (15) the sliding plane

is reached in one step, precisely as assumed in the design

procedure, whereas in the case of controller (33) the reaching

phase is extended over several periods (k0 = 4).

6. Conclusions

In this paper, a new supply policy for periodic-review invento-

ry systems with deteriorating stock was designed using strict

control-theoretic methodology. The proposed policy based on

sliding-mode dead-beat control provides fast reaction to the

changes in market conditions and stable system operation for

arbitrary positive lead-time. It also guarantees that the entire

demand is satisfied from the on-hand stock, thus eliminat-

ing the risk of missed service opportunities and necessity of

backorders. Since the dead-beat scheme requires large order

quantities to be delivered in the initial phase of the control

process, we also propose a modified controller which ensures

that the ordering signal never exceeds the supplier capabilities.

The enhanced nonlinear control law, based on the reaching

law approach, preserves the desirable properties of the orig-

inal strategy and guarantees that input constraint is satisfied.

The proposed controllers obtained from a systematic design

procedure outperform the classical OUT policy in terms of

smaller holding costs and higher service level.

The designed discrete SM control laws have simple and

intuitive form. From the managerial perspective they can be

interpreted as generating orders proportional to the difference

between the current on-hand stock and its reference value de-

creased by the amount of open orders quantified by the rate

of deterioration within the last lead-time. By expressing the

control laws in a closed-form we obtain ordering rules which

are straightforward in software implementation, and easy to

deploy in real inventory management systems.
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[17] G. Golo and Č. Milosavljević, “Robust discrete-time chattering

free sliding mode control”, Systems & Control Letters 41 (1),

19–28 (2000).

[18] B. Bandyopadhyay and S. Janardhanan, Discrete-Time Slid-

ing Mode Control. A Multirate Output Feedback Approach,

Springer-Verlag, Berlin, 2006.

[19] M. Yan and Y. Shi, “Robust discrete-time sliding mode con-

trol for uncertain systems with time-varying state delay”, IET

Control Theory & Applications 2 (8), 662–674 (2008).
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