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Abstract. In the paper, the problem of failure of the elastic bearing supporting the generator in a harmonic drive is presented. To analyse

the cause of the failure, material investigations as well as simulations of the stress state in the bearing versus manufacturing deviations and

fits between the bearing and the generator cam have been carried out. Studies on the stress state in the flexpline have also been conducted

in dependence of such technological deviations and generator bearing-flexspline fits for the classical, short, and ultra-short version of the

harmonic drive with different heights of the bottom. The simulations have been realised on a mathematical model based on analytical

relationships and a 3D model with the aid of FEM.
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1. Analysis of the cam generator-flexible

bearing association

Flexible rolling bearings designer for generators of harmon-

ic drives are specialized bearings. High operational require-

ments, in particular reliability, stability in maintaining mag-

nitude of radial clearance in operational conditions as well

as silent-running feature call for great experience and high

technology level of the manufacturer. Proper operation of the

bearing of a harmonic drive needs securing an appropriate ra-

dial gap after assembling the bearing. A reliability test carried

out on a HP80-83 harmonic drive with the generator bearing

shown in Fig. 2 associated with the cam (Fig. 1) according

to the source version (Table 1) was finished due to crack of

the external ring of the bearing (Figs. 3–5). Material exami-

nations did not reveal any deviations from chemical compo-

sition and the bearing manufacturing process (Sec. 2). The

performed analysis of fit in particular cams with the LG8060

bearing delivered in the source version enabled the assessment

of correctness of the associations with respect to the criterion

of minimum radial clearance of the generator bearing. FEM

simulations of a 3D generator model with a flexible bearing

allowed one to determine the effect of the cam-bearing ring

association quality on the stress state in the bearing. The prob-

lem was considered as multi-sided elastic contact. The bearing

hole for the cam was d = 600
−0.015, theoretical inner radial

clearance 0.03–0.05 mm. The tolerance of elastic radii in the

figures was R0.01
0.001. To obtain proper values of the radial gap

in the cam fit with respect of stresses, some corrections were

introduced to the harmonic drive HP80-83.

Calculations of subsequent associations and true limit

clearance gave:

Table 1

Bearing d = 600
−0.015

No. R Ro – source version Rn – corrected verion

1 Ro = 29.9920 + 0.4880 Rn = 29.9790 + 0.4880

The radius of the cam before correction for: i = 83,

m = 0.5 mm, Wo/m = 0.976

R = 29.992 + 0.488 cos2ϕ, R0.01
0.001 (1)

The inner diameter of the bearing: d = 600
−0.015 and the

proposed change: d = 60+0.015
0 .

Table 2

Circumference for d

Lo L−0.015 L+0.015

188.49556 188.4484 188.5427

Table 3

Cam circumference with the radius before correction

LR+0.001 LR+0.01

188.5019 188.5584

The cam radius after correction:

R = 29.979 + 0.488 cos2ϕ, R0.01
0.001. (2)

Table 4

Cam circumference after correction

LRk+0.001 LRk+0.01

188.4705 188.5270

The description of the base bearing hole d = 600
−0.015

with the uncorrected cam radius R0.01
0.001 are as follows (Ta-

bles 2–4):
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Lo− LR+0.001 = 188.49556−188.5019 = −0.00634 mm

Lo− LR+0.01 = 188.49556−188.5584 = −0.06284 mm

L−0.015 − LR+0.001 = 188.4484−188.5019 = −0.0535 mm

L−0.015 − LR+0.01 = 188.4484−188.5584 = −0.11 mm
(3)

In each of the above case there is interference and only

the first value can be accepted as the other ones lead to elim-

ination of the radial clearance, the 0.11 mm interference in

particular.

The cam according to the producer data: i = 83, m =
0.5 mm, Wo/m = 0.976, Wo = 0.488, R = 29.992 +
0.488 cos2ϕ.

The association of the base bearing hole d = 600
−0.015

with the corrected cam radius R0.01
0.001 are as follows:

Lo− LRk+0.001 = 188.49556− 188.4705 = 0.0250

Lo− LRk+0.01 = 188.49556− 188.5270 = −0.0314

L−0.015 − LRk+0.001 = 188.4484− 188.4705 = −0.022

L−0.015 − LRk+0.01 = 188.4484− 188.5270 = −0.0786
(4)

In the above case it is enough to select the bearings in-

to two size groups to maintain the recommended fit for the

internal bearing ring on the cam – the gap 0 ÷ 0.025 on the

diameter (the optimal association – 0.01–0.02).

The cam according to the producer data: i = 83, m =
0.5 mm, Wo/m = 0.976, Wo = 0.488, R = 29.979 +
0.488 cos2ϕ.

Alternatively, it is possible to apply the H-fit for the bear-

ing hole, i.e. d = 60+0.015
0 . Then relations appearing in the

association of the base bearing hole d = 60+0.015
0 with the

cam with corrected radius R0.01
0.001 are:

Lo− LRk+0.001 = 0.0250 mm

Lo− LRk+0.01 = −0.0314 mm

L+0.015 − LRk+0.001 = 188.5427−188.4705 = 0.0720 mm

L+0.015 − LRk+0.01 = 188.5427−188.5270 = 0.0157 mm
(5)

A selection through change of the second and third asso-

ciation yields the recommended values of the clearance.

Fig. 1. Generator cam
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Fig. 2. Flexible bearing of the cam

2. Test-stand and material examinations

of the harmonic drive bearing

The experimental loading of the HP80-83 harmonic drive was

Mo =120–200 Nm at the angular speed of the generator shaft

ng =1200–1500 rpm. The loading test T = 72 hrs equivalent

to 1.16× 107 cycles of average torque Mrms = 160 Nm was

terminated after cracking of the external ring of the genera-

tor bearing (Figs. 3–5). Dimensional analysis of the consid-

ered structural node exhibited an interference of about 0.025–

0.030 mm in the fit between the cam and the bearing. This

practically eliminated or, at least, strongly limited the neces-

sary radial clearance of the bearing in the extreme association,

which led to excessive stress in the external ring and a high

torque loading in the axial generator bearing. This way in-

creased the normal stress in the external ring variable bilater-

ally due to bearing bending from the cam. Fitting the external

ring with interference on the cam resulted in additional nor-

mal stresses brought about by tension in the internal ring as

well as by elimination of the radial clearance. The bearing

operates in hard loading conditions. Similarly as the classi-

cal rolling bearing, it is exposed to fatigue with respect to

contact stresses and additionally with respect to bending of

the internal ring (constant pw) and the external one (variable

pz). Elimination of the clearance introduced additional stress-

es to both rings, but the external one working with accordance

to the volume fatigue strength had lower durability than the

internal ring subjected to constant volume stresses.

A program of material examinations (Table 5) for the ex-

ternal ring of the generator flexible bearing:

• Test of hardness – the required 58–61 HRC, measured –

60 HRC.

• Search for grinding burns – after etching and visual inspec-

tion no traces of grinding burns were detected.

• Microstructure examination – the specimen was cut out

from the ring, polished, etched in nital and assessed ac-

cording to WTc-1 conditions of technical inspection of the

material manufacturer.

Table 5

Examined parametr of microstructure Requirements Results

martensite 2–6 4

dispersion of carbides 3.3a–5.5a 3.3a

carbide network max 3 1

segregation of carbides max 6.2 6.0

carbide banding max 7.3 7.1

No non-metallic contaminations were found in the not

etched metallographic section.

• Examination of the chemical composition (Table 6).

Table 6

Alloy element Requirements Results

C 0.90–1.05 0.92

Mn 0.25–0.45 0.28

Si 0.15–0.35 0.25

P max 0.025 0.003

S max 0.015 0.003

Cr 1.35–1.65 1.55

Ni max 0.30 0.11

Mo max 0.10 0.02

Cu max 0.25 0.15

Al 0.010–0.050 0.033

Ti(ppm) max 30 30ppm
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Summarising the material investigations, one can conclude

that:

• No deviations from technical conditions and requirements

were found.

• Identations and deformations on the outer surface of the

external ring occurred after crack of the ring.

• Local deformation of the external ring may result from con-

tact with the damaged toothed ring of the harmonic drive

flexspline.

• Technological deviations and the clearance in the associa-

tion cam-bearing-flexspline should be verified.

a)

b)

Fig. 3. a) Bearing ring – traces of identation due to balls on the

running track pz, b) local deformation on the outer surface of the

external ring

Fig. 4. Graph of the local deformation of the outer surface pz

During repeated overloadings of the harmonic drive with-

in the range of k=2Mnom and in the case of fitting the cam on

the bearing with the allowable clearance, there may appear rel-

ative displacement between the cam and the internal bearing

ring. This leads to abrasive wear and micro-spalling inten-

sified by the lubricant that penetrates micro-cracks and thus

accelerates pitting of the bearing running tracks. Such an asso-

ciation of the internal ring of the generator and the cam acts as

a micro-pump sucking the lubricant fluid in the area of minor

axes of the cam (outside the meshing zone) and as a com-

pressing micro-press in the area of the major axis, where the

bearing loading from the radial component of meshing forces

reaches its maximum. An effect of such an action is shown in

Fig. 6. This is a cam of a Mnom = 800 Nm harmonic drive

examined for durability on the test stand at the Institute of

Machine Design Fundamentals at Warsaw University of Tech-

nology. The applied loading and testing time was equivalent

to 15 thousand hours of operation in nominal conditions. The

maximum instantaneous loading was M max = 1600 Nm,

time of duration T = 3 s, frequency – 5 overloadings per

hour.

Fig. 5. View of a damaged bearing

The flexible bearing (Fig. 6) of the generator works in a

complex state of loading. In order to determine its durabili-

ty for the assumed operational conditions or find parameters

for the complex durability, it is necessary to establish the
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magnitude and course of the bearing loading in function of

the torque applied to the harmonic drive. At the same time,

the type of flexspline design, kind and teeth geometry, tor-

sional stiffness of the drive and the generator-flexspline node

as well as the accuracy class should be kept in mind. [1].

The bearing is expanded from the inside, it is compressed by

the radial components of meshing forces acting in two zones

(bi-harmonic drive). Both components of the radial meshing

forces are balanced by the reaction of the bearing. Owing to

torsional flexibility of the drive and true manufacturing devi-

ations, both zones of radial meshing forces lose their symme-

try with respect to the cam axis and the cam reaction forces

during growth of the loading carried on by the drive. In dy-

namical conditions of operation, reversals and overloadings,

this phenomenon intensifies itself. A local loss of contact be-

tween the flexspline and the external bearing ring as well as

an increase in flexspline stresses take place in two areas ro-

tated from the major cam axis in the in opposite direction

with respect to velocity of the generator [2]. This undesirably

affects the durability of the flexible bearing as it leads to gen-

eration of transverse vibration (radial movements of the cam

in the Oldhamm coupling) and induced by it torsional vibra-

tion of the generator. This, in turn, disturbs motion of the

rolling elements, which produces transverse vibration, brak-

ing, slip, increase of friction, non-uniformity of loading of the

rolling elements and, finally, growth of noise. As a result, the

durability of the bearing and the harmonic drive itself lowers.

Fig. 6. Flexible bearing fitted with clearance on the cam

3. 3D FEM model of the cam generator

In order to carry radial interactions between the bearing balls

and running tracks, in the complete model node-to-node con-

tacts were applied. This represents a purely point-like contact

that was incorporated to diminish the computational size of

the model. Such kind of contact enables taking into consid-

eration the radial clearance or interference (in the model the

gap was 0.03 mm), see Fig. 7.

FEM simulation results (Rrun = 0.525 ∗ φball, R =
29.992 + 0.488 cos(2φ) minimum interference after correc-

tion of the fit).

Fig. 7. FEM model of the bearing assembly
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a) b)

Fig. 8. Stresses: a) Huber-Mises, b) circumferential

a) b)

Fig. 9. Stresses on the inside running track: a) Huber-Mises, b) radial

a) b)

Fig. 10. Stresses on the outside running track: a) Huber-Mises, b) radial
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a) b)

Fig. 11. Cross-section on the major axis of the generator: a) Huber-Mises stresses, b) radial stresses

a) b)

Fig. 12. Stresses: a) Huber-Mises, b) circumferential

a) b)

Fig. 13. Stresses on the inside running track: a) Huber-Mises, b) radial
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a) b)

Fig. 14. Cross-section on the major axis of the generator: a) Huber-Mises stresses, b) radial stresses

Fig. 15. Surface radial stresses on the internal ring of the flexible bearing

Fig. 16. Equivalent stresses in the running track of the external ring of the flexible bearing
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Fig. 17. Equivalent stresses in the running track of the internal ring of the flexible bearing

FEM simulation results (R = 29.979 + 0.488 cos(2φ)
maximum interference after correction of the fit R0.01

0.001,

Rrun = 0.515 ∗ φball).
The analysis of the obtained simulation results for stress-

es in the generator bearing before and after correction of the

bearing-cam association and correction of the running track

radius (Figs. 8–17) indicates a considerable drop of the max-

imum stresses, both the directional and the equivalent. Be-

cause of the vastness of the numerical data, only the limiting

states of the associations with the minimal interference before

correction and the maximal one after it are presented. The

introduced modifications produced noticeable drop of stress-

es of the least advantageous association after correction in

comparison with the best one before it. The maximum equiv-

alent Huber-Mises stresses shown in Figs. 11, 14 and 15–17

dropped by 51 MPa. The introduced modifications in toler-

ances of cams and running track radii eliminated subsequent

cases of cracking of the bearing rings and resulting damage of

harmonic drives. Technology of 8 series of dimensions of flex-

ible rolling bearings has been prepared and implemented [3].

The production is now on, targeted at the UE countries.

4. Mathematical model of the flexspline

of a harmonic drive

The essential element of proper performance of a harmonic

drive is correct assembly of the generator cam with the flexs-

pline. Having assumed the correct geometrical parameters of

the flexspline and toothed ring, it is important to maintain

properly chosen radial deformation and fit of the generator

bearing in the flexspline. Excessive interference introduces

normal stresses from the tensioned flexspline. On the oth-

er hand, excessive clearance lowers loading capability of the

drive and diminishes the limiting torque at which teeth begin

to skip. Also the length-to-diameter ration of the flexspline has

considerable effect on the normal bending and tensile stresses

being transferred to the flexspline bottom.

The investigations were carried out on a mathematical

model describing the stress state in the flexspline in func-

tion of the radial deviation w* as well as length and height

of the flexpline bottom. 3D numerical simulations based on

a FEM model were realized. The flexsline was modelled as

a Kirchhoff-Love cylindrical shell, whereas the bottom as

a annular plate. At the free edge of the shell, a displace-

ment w* is assumed due to interaction with the cam, while

the plate axis is simply supported. The shell and plate are

permanently joined (ideal mechanical contact). The equation

of forces and moments balance for the cylindrical shell are:

∂N1t

∂z
−

1

R

∂S12

∂θ
= 0,

1

R

∂N2t

∂θ
+
∂S12

∂z
+

1

R

(

1

R

∂M2t

∂θ
+ 2

∂H12

∂z

)

= 0,

N2t −R
∂

∂z

(

∂M1t

∂z
+

1

R

∂H12

∂θ

)

−

−
∂

∂θ

(

1

R

∂M2t

∂θ
+
∂H12

∂z

)

=
∂M2t

∂θ
,

(6)

where R is the radius of the middle surface of the shell, z –

coordinate along the shell axis measured from the free edge

deformed by the cam (0 ≤ z ≤ l); θ- circular coordinate. The

forces and moments are expressed by components of defor-

mation of the middle surface as:

N1t =
D0t

1 − ν2
(ε1 + νε2) ,

N2t =
D0t

1 − ν2
(ε2 + νε1) ,

M1t = D1t (κ1 + νκ2) ,

M2t = D1t (κ2 + νκ1) ,

S12 =
D0t

1 + ν
ε12,

H12 = D1t (1 − ν)κ12.

(7)
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The deformation components of the middle surface are

in relation with its axial displacement u1 and the transverse

one w:

ε1 =
∂u1

∂z
,

ε2 =
1

R

∂u2

∂θ
+
wt

R
,

ε12 =
1

2

(

1

R

∂u1

∂θ
+
∂u2

∂z

)

,

κ1 = −
∂2wt

∂z2
,

κ2 = −
1

R2

∂

∂θ

(

∂wt

∂θ
− u2

)

,

κ12 = −
1

R

∂

∂z

(

∂wt

∂θ
− u2

)

.

(8)

At the same time, the integrity equations have the form:

∂κ2

∂z
−

1

R

∂κ12

∂θ
= 0,

∂κ1

∂θ
−R

∂κ12

∂z
−

1

R

∂ε1
∂θ

+ 2
∂ε12
∂z

= 0,

κ1 +R
∂

∂z

(

∂ε2
∂z

−
1

R

∂ε12
∂θ

)

+

+
∂

∂θ

(

1

R

∂ε1
∂θ

−
∂ε12
∂z

)

= 0.

(9)

In this case, the stresses in the cylindrical shell are as

follows:

σz =
1

2h

(

N1t + 3
γ

h2
M1t

)

,

σθ =
1

2h

(

N2t + 3
γ

h2
M2t

)

,

σzθ =
1

2h

(

S12 + 3
γ

h2
H12

)

,

(10)

where 2h is the shell thickness, −h ≤ γ ≤ h. Substituting

(7) and (8) into (6), one obtains the equilibrium equations in

terms of displacements:

D0t

1 − ν2

[

∂2u1

∂z2
+
ν

R

(

∂2u2

∂z∂θ
+
∂wt

∂z

)]

−

−
D0t

2R(1 + ν)

(

∂2u1

∂θ2
+
∂2u2

∂θ∂z

)

= 0,

1

R

D0t

(1 − ν2)

[

1

R

(

∂2u2

∂θ2
+
∂wt

∂θ

)

+ ν
∂2u1

∂θ∂z

]

+

+
D0t

2(1 + ν)

(

1

R

∂2u1

∂z∂θ
+
∂2u2

∂z2

)

−

−
D1t

R2

[

1

R2

∂2

∂θ2

(

∂wt

∂θ
− u2

)

+ ν
∂3wt

∂θ∂z2

]

−

−
2D1t (1 − ν)

R2

∂2

∂z2

(

∂wt

∂θ
− u2

)

= 0,

D0t

1 − ν2

(

1

R

∂u2

∂θ
+
wt

R
+ ν

∂u1

∂z

)

+

+D1tR

[

∂4wt

∂z4
+

ν

R2

(

∂4wt

∂z2∂θ2
−

∂3u2

∂z2∂θ

)]

+

+
2D1t (1 − ν)

R

∂3

∂θ∂z2

(

∂wt

∂θ
− u2

)

+

+
D1t

R

[

1

R2

∂3

∂θ3

(

∂wt

∂θ
− u2

)

+ ν
∂4wt

∂z2∂θ2

]

=

= −D1t

[

1

R2

∂2

∂θ2

(

∂wt

∂θ
− u2

)

+ ν
∂3wt

∂θ∂z2

]

,

(11)

where D0t = 2Eh is the tensile stiffness, D1t =
2

3

Eh3

(1 − ν2)
– bending stiffness, ν – Poisson’s ratio. The boundary condi-

tions for the shell are:

at the edge z = 0 : wt = w∗, M1t = 0, N1t = 0.

at the edge z = l – ideal mechanical contact

with the annular plate.

(12)

In the axi-symmetric case (u2 and derivatives with respect

to θ are zero), system of equations (11) assumes the form:

∂2u1

∂z2
+
∂wt

∂z
= 0,

D0t

1 − ν2

(

wt

R
+ ν

∂u1

∂z

)

+D1tR
∂4wt

∂z4
= 0

(13)

and the second equation in (11) is satisfied by identity. Having

integrated the first equation in (11) and substituted it in the

place of the second one, we arrive at:

d4wt

dz4
+

3
(

1 − ν2
)

h2R2
wt = 0. (14)
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After introducing non-dimensional quantities:

w0 =
wt

R
, x =

az

R
, a4 =

3
(

1 − ν2
)

R2

4h2
(15)

equation (14) assumes the form:

d4w0

dx4
+ 4w0 = 0. (16)

The general solution to this equation is sought in the ex-

ponential form w0 = etx. Then, for the characteristic equation

t4+4 = 0 the following roots are found: t1 = 1+i, t2 = 1−i,
t3 = −1 + i, t4 = −1 − i. Solution to equation (11) can be

expressed as:

w0 = Aex cosx+Bex sinx+Ce−x cosx+De−x sinx, (17)

where the coefficients A, B, C, D are found from the bound-

ary conditions. In the general case, formulas for the forces

and moments (7), taking into account (15), are following:

N1t = 0, S12 = 0,

H12 = 0, N2 = D0tw0,

M1t = −
D0tR

4a2

d2w0

dx2
, M2t = νM1t.

(18)

Stresses (10) in the shell can be now described as:

σ=
z −

3D0tRγ

8a2h3

d2w0

dx2
,

σ=
θ

1

2h

(

N2t + 3M2t

γ

h2

)

.

(19)

The maximum stress on the outer “+” and inner “-” sur-

face are obtained for γ = ±h, hence

σ±

z = ∓
3D0tR

8a2h2

d2w0

dx2
, σ±

θ =
D0t

2h
w0 + νσ±

z .

According to formulas (17) and (18), we obtain:

M1t = −
D0tR

2a2
[ex (B cosx−A sinx)

+ e−x (C sinx−D cosx)
]

,

Q = −
D0t

2a
[Bex (cosx− sinx) −Aex (sinx+ cosx)

−Ce−x (sinx− cosx) +De−x (sinx+ cosx)
]

,

dw0

dx
= [Aex (cosx− sinx) +Bex (sinx+ cosx)

−Ce−x (sinx+ cosx) −De−x (sinx− cosx)
]

,

d2wt

dx2
= 2 [ex (B cosx−A sinx)

+ e−x (C sinx−D cosx)
]

,

(20)

where Q is the shear force. Formulas (20) will be used for the

boundary conditions. In particular, fulfilling conditions (12),

we find that: B = D, C =
w∗

R
−A. Then, formulas (20) can

be expressed as:

M1t =−
D0tR

a2

(

Bshx cosx−Achx sinx+
w∗

2R
e−x sinx

)

,

Q = −
D0t

a

[

B (chx cosx− shx sinx)

−A (chx cosx+ shx sinx) +
w∗

2R
e−x (cosx− sinx)

]

,

dw0

dx
= 2A (cosxchx− sinxshx)+

+ 2B (cosxchx + sinxshx) −
w∗

R
e−x (cosx+ sinx) ,

d2wt

dx2
= 4Bshx cosx− 4Achx sinx+ 2

w∗

R
e−x sinx

(20′)

and the bending: w0 = 2Ashx cosx + 2Bchx sinx +
w∗

R
e−x cosx. The equilibrium equations for the annular plate

modelling the flexspline bottom are:

d2u

dr2
+

1

r

du

dr
−
u

r2
= 0,

d3wp

dr3
+

1

r

d2wp

dr2
−

1

r2
dwp

dr
= 0.

(21)

The forces and moments expressed in terms of the dis-

placements u and wp are described as:

N1p =
D0p

1 − ν2

(

du

dr
+ ν

u

r

)

,

N2p =
D0p

1 − ν2

(

u

r
+ ν

du

dr

)

,

M1p = −D1p

(

d2wp

dr2
+
ν

r

dwp

dr

)

,

M2p = −D1p

(

1

r

dwp

dr
+ ν

d2wp

dr2

)

.

(22)

The radial and circumferential stresses in the plate:

σr =
1

2h1

(

N1p + 3
γ

h2
1

M1p

)

,

σϕ =
1

2h1

(

N2p + 3
γ

h2
1

M2p

)

,

(23)

where D0p = 2Eh1 is the tensile stiffness, D1p =
2

3
Eh3

1

(1−ν2)

– bending stiffness, h1 – plate thickness (−h1 ≤ γ ≤ +h1),
(b ≤ r ≤ d), d = R − 2h. The solution to equation (21) can

be expressed in the form:

u = C1r +
C2

r
, wp = C3 ln r + C4 + C5r

2. (24)
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Boundary conditions for the plate:

u = 0,

M1p = 0

}

at r = b, (25)

at r = d – ideal mechanical contact with the shell.

u (d) = wt (l) ,

dwp (d)

dr
=
dwt (l)

dz
,

N1p (d) = Q (l) ,

M1p (d) = M1t (l) .

(26)

Satisfying conditions (12), (25), (26), we obtain the fol-

lowing system of equations:

C3
1

a

[

1

d
+

(1 − ν) d

(1 + ν) b2

]

−

− 2 [A (cosβchβ − sinβshβ) +

+B (cosβchβ + sinβshβ)] =

= −
w∗

R
e−β (cosβ + sinβ) ,

C1

(

d2 − b2

Rd

)

− 2A cosβshβ − 2B sinβchβ+

=
w∗

R
e−β cosβ,

C1
2ah1

(1 − ν2)h

[

1 + ν −
b2 (ν − 1)

d2

]

+

+ 2A (sinβshβ + cosβshβ)+

+ 2B (sinβshβ − cosβchβ) =

=
w∗

R
e−β (cosβ − sinβ) ,

C3
2a2h3

1

3(1 − ν2)hR

(

ν − 1

d2
+

1 − ν

b2

)

+

+ 2A sinβchβ − 2B cosβshβ =
w∗

R
e−β sinβ

(

β =
al

R

)

.

(27)

From boundary condition (25) it ensues that

C2 = −C1b
2, C5 =

1 − ν

2 (1 + ν) b2
C3

and from condition (12) that

B = D, C = A−
w∗

R
.

Thus, solving the system of equations (27), we obtain:

A =
1

L
[(nψ − ps) (kδ − tξ) + (αξ + λδ) (pq −mn)] ,

B =
1

L
[(nψ − ps) (qξ +mδ) + (nk + pt) (αξ + λδ)] ,

L = (pq −mn) (qξ +mδ) − (nk + pt) (kδ − tξ) ,

C1 =
1

n
(s−At+Bq) ,

C3 =
1

δ
(Aq +Bt− α) ,

(28)

where

k = 2shβ cosβ, m = 2chβ sinβ,

q = 2 (chβ cosβ − shβ sinβ) ,

t = 2 (chβ cosβ + shβ sinβ) ,

s =
w∗

R
e−β (cosβ − sinβ) ,

α =
w∗

R
e−β (cosβ + sinβ) ,

ψ =
w∗

R
e−β cosβ,

λ =
w∗

R
e−β sinβ,

ξ =
2a2h3

1

3 (1 − ν2) hR

(

ν − 1

d2
+

1 − ν

b2

)

,

p =
1

R

(

d−
b2

d

)

,

n =
2ah1

(1 − ν2)h

[

1 + ν −
b2 (ν − 1)

d2

]

,

x =
az

R
,

a =
4

√

3 (1 − ν2)R2

4h2
,

δ =
1

a

[

1

d
+

(1 − ν)

(1 + ν)

d

b2

]

,

β =
al

R
, (0 ≤ z ≤ l) .

The maximum stress on the outer “+” and inner “−” sur-

face of the shell are obtained basing on Eqs. (19′), (20′):

σ±

z = ±
3ER

a2h

(

Achx sinx−Bshx cosx−
w∗

2R
e−x sinx

)

,

σ±

θ =

= E
[

2Ashx cosx+ 2Bchx sinx+
w∗

R
e−x cosx

]

+ νσ±

z .

(29)
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The maximum stress on the outer “+” and inner “−” sur-

face of the shell are obtained basing on Eq. (23) at γ = ±h:

σ±

r =
E

(1 − ν2)

{

C1

[

1 + ν +
b2

r2
(1 − ν)

]

∓C3

(

ν − 1

r2
+

1 − ν

b2

)}

,

σ±

ϕ =
E

(1 − ν2)

{

C1

[

1 + ν +
b2

r2
(ν − 1)

]

∓C3

(

1 − ν

r2
+

1 − ν

b2

)}

.

(30)

Results of numerical calculations for the stresses in the

flexspline versus its length, height, bottom thickness and the

interference in the flexspline-generator bearing fit are shown

in Figs. 18–20. As can be seen, the positive deviation w*

(interference) in the flexspline-generator bearing fit increases

normal stresses coming from tensile loading of the flexspline.

The shell was simulated for a deformation increment from the

deviation (interference) in the fit. Resultant stresses induced

by the generator deformation and the interference were found

for the 3D FEM model. For ultra-short flexsplines, the stresses

in the bottom part rapidly grow. Practically, the bottom carries

all normal forces coming form tension, which is illustrated in

Fig. 19b. The bottom thickness for the assumed deformation

forces in the simulation range 2–5 mm does not essentially

affect the magnitude of radial stresses in this element (see

Fig. 20).

a) b)

Fig. 18. Circumferential stresses on the outer surface of the flexspline for w∗ = 0.002 cos 2ϕ, a) vs. ϕ for z = 0.005 m, b) along z axis for

ϕ = 0

a) b)

Fig. 19. a) Axial stresses in the flexspline for ϕ = 0, b)Circumferential stresses in the bottom vs. r for w∗ = 0.2 + 0.002 cos 2ϕ
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a) b)

Fig. 20. Radial stresses in the bottom vs. r for the bottom thickness a) h1 = 0.2 mm, b) h1 = 0.5 mm, where the colours are for the

following length-to-diameter ratios of the flexspline L/D = 0.1 (red), L/D = 0.15 (blue), L/D = 0.275 (green)

5. FEM analysis of the 3D flexspline model

The numerical simulations were carried out for the follow-

ing values of the radial interference: w∗ = 0 mm, 0.01 mm,

0.02 mm and standard lengths of the harmonic drive L =
0.7D, L = 0.3D, L < 0.3D, where D denotes the diameter

of the flexspline (Figs. 21–23). Simulations were realised for

the deformation w −m = 0.5 mm.

Fig. 21. 3D model of the flexspline corresponding to the mathematical description

a) b)

Fig. 22. Stresses: a) Huber-Mises, b) circumferential for D = 120 mm, L = 75 mm, g = 1 mm, m = 0.5 mm,

R(ϕ) = d/2 + m ∗ cos 2ϕ, w∗ = 0
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a) b)

Fig. 23. Stresses: a) Huber-Mises, b) circumferential for D = 120 mm, L = 33 mm, g = 1 mm, m = 0.5 mm,

R(ϕ) = (d/2 + w∗) + m ∗ cos 2ϕ, w∗ = 0.02 mm

Fig. 24. Huber-Mises stresses on a half of the flexspline circumference

Fig. 25. Circumferential stresses along the flexspline axis
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Fig. 26. Axial stresses along the flexspline length

Analysis of the obtained from simulations stresses versus

length and radial deformation of the flexspline as well as de-

viation of the fit in the generator indicate a linear relationship

of the stress increment both directional and equivalent with

respect to the shortening of the flexspline length. Also intro-

duction of the positive radial deviation of 0.01 mm increased

the magnitude of equivalent stresses by about 20% (Fig. 24)

for L/D = 0.75. On the other hand, for a short flexspline of

L/D = 0.33, the stress increment for the same deviation of

fit remained unchanged in magnitude but relatively dropped

with respect to resultant stresses in the shortened flexslpine

(see Figs. 24–26).

6. Summary

The analysis of the generator-flexspline system carried out on

a mathematical model as well as through FEM simulations

and test-stand experiments pointed out considerable effect of

the generator bearing fit in the cam and flexspline on the

stress state in the bearing and the flexpline. The cam should

be manufactured and fitted to the bearing with a clearance of

0–0.015 mm on the diameter. This enables maintaining suffi-

cient radial gap for the generator bearing under loading and

preserves sufficient elasto-frictional association with respect

to instantaneous two-fold overloading of the harmonic drive.

The maximum radial and equivalent stresses appear in running

tracks of both rings at the contact with the nearest rolling el-

ements symmetrically placed on both sides of the major cam

axis, however not on the axis itself. The optimal radius of

the running track in terms of the bearing stress state turned

out to be R =0.51–0.515φk, not 0.525φk. The shortening of

the flexspline length without structural changes in its design

proportionally increases normal stresses both in the flexspline

and its bottom. Extreme shortening of L/D =0.10–0.15 and

maintaining the radial deformation in the bottom leads to the

appearance of tensile stresses with damaging magnitude crack-

ing the structure immediately or after a low number of loading

cycles. For L/D > 0.3, it is possible to apply a fine-module

meshing which would increase the ratio of the harmonic drive

or introduce constructional modifications to the flexspline, e.g.

outward flanging of the flexspline bottom or incorporate an

optimised shape [1].
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