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Abstract. Based on the semi-Markov process theory, this paper describes an analytical study of a loss multiple-server two-station network

model with blocking. Tasks arrive to the tandem in a Poisson fashion at a rate λ, and the service times at the first and second stations

are non-exponentially distributed with means sA and sB , respectively. Between these two stations there is a buffer with finite capacity. In

this type of network, if the buffer is full, the accumulation of new tasks (jobs) by the second station is temporarily suspended (blocking

factor) and tasks must wait on the first station until the transmission process is resumed. Any new task that finds all service lines at the

first station occupied is turned away and is lost (loss factor). Initially, in this document, a Markov model of the loss tandem with blocking

is investigated. Here, a two-dimensional state graph is constructed and a set of steady-state equations is created. These equations allow the

calculation of state probabilities for each graph state. A special algorithm for transforming the Markov model into a semi-Markov process is

presented. This approach allows calculating steady-state probabilities in the semi-Markov model. In the next part of the paper, the algorithms

for calculation of the main measures of effectiveness in the semi-Markov model are presented. Finally, the numerical part of this paper

contains an investigation of some special semi-Markov models, where the results are presented of the calculation of the quality of service

(QoS) parameters and the main measures of effectiveness.
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1. Introduction

In the mathematical models of discrete flow systems, which

are realistic and effective tools for performance analysis of

a wide class of systems such as computer systems and net-

works, telecommunication networks, transportation networks,

production lines, or flexible manufacturing systems, queuing

network models (QNM) with finite capacity queues and block-

ing are often used [1–8]. Finite capacity queuing network

models are of great value towards effective congestion con-

trol and quality of service (QoS) protection of modern discrete

flow networks. Blocking in such networks arises because the

traffic of jobs through one queue may be momentarily halted if

the destination queue has reached its capacity. Over the years,

many publications related to the analysis and application of

QNMs with finite capacity queues and blocking in the field

of computer science, operations research, traffic engineering

or industrial engineering have been written [9–16].

Exact closed-form solutions for QNMs with blocking are

not generally attainable except for some special cases. As a

consequence, numerical techniques and analytic approxima-

tion have been proposed for the study of arbitrary QNMs with

non-Markovian service times under various types of blocking

mechanisms. Authoritative expositions of the subject appear

in Perros [17] and Balsamo et al. [18]. However, there is still

a great interest in the systems with buffer capacity limita-

tions under different blocking mechanisms [19–21]. A block-

ing mechanism restricts the total intensity of input streams by

enforcing certain limitations the blocking and synchronization

procedures [22–25]. Such models are in constant demand for

the performance evaluation and predication of more complex

systems such as high-speed telecommunication networks or

flexible manufacturing systems, etc.

Most research in the area of two-station (tandem) open

networks with blocking (see for example [17]) assumes that

each queue is served by a single server, where the first station

has an infinite or a finite capacity and the second station has

a finite capacity. The state of this queuing network can be

described by the pair of variables indicating the number of

tasks in the first station and the number of tasks in the second

station. The various closed-form results related to the single

server queuing network include the following two limiting

cases: when a task at the first station receives an infinitesi-

mal amount of service and when the first station is saturated.

Another special tandem model with blocking assumes that

multiple servers serve each queue. In this case, upon com-

pletion of service at the first station, a task will get blocked

if at that moment the second station is full. We say that a

station is saturated when there is always at least one task

waiting for service, i.e. the station is never empty. Similarly,

other authors studied the tandem configuration with exponen-

tial service times and no intermediate buffers, and no queue in

front of the first station or where the first station was assumed

to have an infinite (or a finite) capacity.

This paper extends the author’s previous research on the

open tandem model with blocking [6]. The former paper on-

ly considers Markov multiple server two-station queuing net-

works with blocked separated serving lines assuming that the

first station is under heavy load. The current publication exam-

ines an open non-Markov loss tandem with blocked separated

lines at the first station assuming that the first station has no

queue. In both cases, when a departure occurs from the sec-
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ond station, one of the blocked tasks will enter the second

station and its associated serving line will become unblocked.

This paper provides the mathematical study of a special

type of network configuration (tandem), as shown in Fig. 1.

This kind of network has N parallel lines at the first station,

and the other station with c parallel servicing lines. Between

these stations is a common waiting buffer with finite capacity,

for example equal to m. When the buffer is full, the accumu-

lation of new tasks from the first station is temporarily sus-

pended and a phenomenon called blocking occurs, until the

queue empties and allows new inserts. This is the classical

mechanism for controlling the intensity of the arriving task

stream, which comes to the two-station network.

Fig. 1. Loss tandem network with blocking

In this kind of tandem configuration, no more than N +
m + c tasks can be processed simultaneously and then the

tandem becomes idle, if there are no tasks in both stations.

Assuming that the input stream to the tandem network repre-

sents a Poisson process and the service time in both stations

corresponds to a random variable with non-exponential distri-

bution, it is a non-Markov model of loss tandem with block-

ing. At the beginning of this paper all states of the tandem

network are defined, then steady state probabilities and the

main tandem measures of effectiveness are calculated. Addi-

tionally, algorithms for calculation of blocking and loss prob-

abilities, delay time in the buffer, blocking time in the station

A, the percentage of buffer filling, etc. is shown.

The structure of the paper is as follows. Section 2 specifies

the tandem model and shows procedures for finding the state

probabilities in a semi-Markov tandem model, in Sec. 3, the

procedures for calculating the main measures of effectiveness

are given. Model implementation and a numerical example are

described in Sec. 4. Finally, conclusions are drawn in Sec. 5.

2. Semi-Markov analysis of a loss tandem

with blocking

Queuing networks with finite capacity queues have been in-

troduced to represent systems with finite capacity resources

and population constraints. When a queue reaches its maxi-

mum capacity then the flow of jobs (tasks) into the service

station is stopped, and the blocking phenomenon arises. Let

us consider the two-station network with blocking as shown in

Fig. 1. The input task stream comes to station A. This station

has no buffer and it can accept only N incoming tasks. New

tasks, which arrive at the full first station, are not accepted

and are rejected. Each task at the first station is processed on

the parallel service lines and upon service completion sent to

station B. If there are free lines on this station, the service

process starts immediately, if not, the tasks must wait in the

buffer. If the buffer is full, any task upon service completion

at the station A, is forced to wait and blocks this service line.

The general assumptions for this tandem model are:

• external task stream arriving at station A is assumed to be

a Poisson stream, with rate λ = 1/a, where a is the mean

inter-arrival time,

• station A has N parallel service lines,

• c service lines are available at station B,

• in both stations the service time for each task represents a

non-exponentially distributed random variable, with mean

sA = 1/µA and sB = 1/µB , where µ is mean service rate,

• the buffer capacity is finite, for example equal to m.

Under these assumptions, if the buffer is full, any task up-

on completion of service at station A, is forced to wait in its

service line, because the transfer process from the station A,

depends only on the service process in station B. Physically,

blocked tasks stay on station A, but the nature of the service

process in station B, allows one to treat them as located in

additional places in the buffer and they belong to station B.

In this case, there can be a maximum of c + m + N tasks

assigned to the second station including all tasks in the first

station that can be blocked (the maximum number of states

in the two-dimensional tandem state space, that may belong

to the second station is equal to c + m + N ).

In turn, the maximal number of non-blocked tasks (the

maximal number of unblocked, active servers) in the first sta-

tion is equal to N . It means that the current number of tasks

that belong to the second station depends on the number of

non-blocked tasks in station A (let it be fixed as i). Therefore,

the current number of states in station B (let us denote it as

j) is equal to j = c + m + N − i. If the numbers of tasks

located simultaneously at the tandem in the first and second

stations are denoted by i and j, then a semi-Markov model

with two-dimensional state space and with a unique path from

the state (0, 0) to any state (i, j) and back to the state (0, 0)

is defined in this paper (see Figs. 2 and 3).
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Fig. 2. Two-dimensional tandem state diagram (first part)

According to the general approach for analyzing semi-

Markov models, the first step is to find solutions to the classi-

cal Markov model. Generally, queuing networks with blocking

are difficult to solve, because their steady state probabilities

cannot be shown to have a product-form solution. Hence, most

of the techniques that are employed to analyse these networks

are in the form of approximation or numerical techniques.

Numerical methods are particularly useful in cases where it

is not possible to obtain an analytic solution for the queuing

system under study. The equivalent Markov queuing system

under study (with the same service rates) is first formulated

as a continuous-time Markov process with discrete states, and

subsequently its steady-state probability vector is calculated

using an equation solving technique [17, 18]. A queuing net-

work with blocking, under appropriate assumptions, can be

formulated as a Markov process and the stationary probabili-

ty vector can be obtained using numerical methods for linear

systems of equations.

Before describing the equations for calculation of steady-

state probabilities, we need to define the service rates for

station A:

µA
1 = µA, µA

2 = 2 · µA, . . . ,

µA
i = i · µA, . . . , µA

N = N · µA
(1)

and station B:

µB
1 = µB, µB

2 = 2 · µB, . . . ,

µB
c = c · µB, . . . , µB

c+m+N = c · µB.
(2)
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Fig. 3. Two-dimensional tandem state diagram (second part)

Based on an analysis of this state space diagram, the

process of constructing the steady-state equations can be di-

vided into several independent steps, which describe several

similar, repeatable schemas (see Figs. 2 and 3). These steady-

state equations are:

λ · p0,0 = µB
1 · p0,1

for i = 0, j = 0,

(λ + µB
j ) · p0,j = µA

1 · p1,j−1 + µB
j+1 · p0,j+1

for i = 0, j = 1, . . . , c + m,

(λ + µA
i ) · pi,0 = λ · pi−1,0 + µB

1 · pi,1

for i = 1, . . . , N − 1, j = 0,

(λ + µB
j + µA

i ) · pi,j = λ · pi−1,j+

+µA
i+1 · pi+1,j−1 + µB

j+1 · pi,j+1

for i = 1, . . . , N − 1, j = 1, . . . , c + m,

µA
N · pN,0 = λ · pN−1,0 + µB

1 · pN,1

for i = N, j = 0,

(µB
j + µA

N ) · pN,j = λ · pN−1,j + µB
j+1 · pN,j+1

for i = N, j = 1, . . . , c + m − 1,

(µB
c+m + µA

N ) · pN,c+m = λ · pN−1,c+m

for i = N, j = c + m.

(3)

And for states with blocking the equations are:

(λ + µB
j ) · p0,j = µA

1 · p1,j−1 + µB
j+1 · p0,j+1

for i = 0, j = c + m + 1, . . . , c + m + N − 1,

µB
c+m+N · p0,c+m+N = µA

1 · p1,c+m+N−1

for i = 0, j = c + m + N,

(λ + µB
j + µA

i ) · pi,j =

= λ · pi−1,j + µA
i+1 · pi+1,j−1 + µB

j+1 · pi,j+1

for i = 1, . . . , N − 2,

j = c + m + 1, . . . , c + m + N − 1 − i

(µB
c+m+N−i + µA

i ) · pi,j =

= λ · pi−1,j + µA
i+1 · pi+1,c+m+N−(i+1)

for i = 1, . . . , N − 1, j = c + m + N − i.

(4)

This set of linear equations can be solved using classical

numerical methods, based on algorithms typical for sparse

and diagonal matrices.

Let us examine the semi-Markov model with a finite num-

ber of its states, which is for example equal to K . In the

semi-Markov model, during the investigation procedure we

try to find the steady-state probabilities qi,j that the mod-

el is in state (i, j). By using some convenient state ordering

for tandem model, we may transform the state description

(i, j) to the state number (k), where k = 1, 2, . . . , K . Con-

sider that we have a Markov tandem model with the identical

state transition rates as the semi-Markov model. Tradition-
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ally, steady-state distributions of semi-Markov processes are

found from the embedded Markov chain with a given rate

transition matrix [26]. Clearly this still requires the calcula-

tion of the entire steady-state distribution of the embedded

Markov process. What we achieve in this paper is the direct

calculation method of individual steady-state probabilities of

the semi-Markov process, which are functions solely of the

sojourn time in a state [26].

Assume that for each model state is known the mean so-

journ time mi,j (the expected time the process remains in the

(i, j)th state during each visit) in a semi-Markov model [26],

then if we choose the number of state changes L in the equiv-

alent Markov model large enough, we can say that this model

visited state (i, j) Li,j = pi,j · L times. By the way, the total

sojourn time when the semi-Markov model was in any given

state is equal to:

Ti,j = pi,j · L · mi,j . (5)

Whereas in a semi-Markov model, the average time for L
state changes, may be calculated from the following formula:

T =

K∑
k=1

Tk = L ·

K∑
k=1

(pk · mk), (6)

where pk = pi,j and mk = mi,j .

Assuming that qi,j is the (i, j) state probability in the

semi-Markov model then its entire mean sojourn time (for

this state) during interval T is equal to:

Ti,j = qi,j · T = qk · L ·

K∑
k=1

(pk · mk), (7)

where qk = qi,j and directly from relation (5) and (7) we

have:

qk =
pk · mk

K∑
k=1

(pk · mk)

(8)

where qk = qi,j , pk = pi,j and mk = mi,j and

K∑
k=1

qk = 1. (9)

Recapitulating, in the semi-Markov processes any steady-

state probability can be calculated from the equivalent Markov

models [26]. Here, the last problem, which must be solved, is

how to calculate the mi,j parameter in a semi-Markov mod-

el, it means calculating the mean sojourn (service) time for

state (i, j). At the beginning, we try to calculate another pa-

rameter m∗

i,j – the mean time simultaneously spent by the

tasks during processing by station A and station B, unless

the new admission appears (the expected time until the next

service completion in either node), where index i belongs to

the station A and index j belongs to station B.

Let τA be the time until the next service completion in

node A, and let τB be the time until the next service com-

pletion in node B (independent random variables). Let τAB

be a random variable for duration of time until the next ser-

vice completion in node A or B, whichever comes first (the

simultaneous service time). This simultaneous service time

(random variable) distribution for any tandem state can be

given by the following expressions:

P (τAB > x) = P (τA > x, τB > x) = ΦA(x) · ΦB(x),

ΦA(x) = 1 − FA(x),

ΦB(x) = 1 − FB(x),

(10)

where FA(x) and FB(x) are distribution functions of the ran-

dom service times in the stations A and B. From relations (10)

directly we have:

m∗

AB =

∞∫

0

ΦA(x) · ΦB(x)dx. (11)

This parameter is the mean sojourn time for the following

tandem states: (N, 1), . . ., (N, c+m), (N −1, c+m+1), . . .,
(0, c + m + N) (see Figs. 2 and 3 – the bottom graph states,

except state (N, 0)). Calculation process of the mean sojourn

time in the remaining tandem states (except state (0, 0)) needs

to include the task arrival factor, because any visit to state

(i, j) would finish upon the next service completion or task

arrival. According to the general assumptions for the tandem

model, the external task stream is Poisson process, where the

probability of k arrivals in an interval (0 − t) is given by:

pk(t) =
(λ · t)k

k!
· e−λ·t for k ≥ 0, t ≥ 0. (12)

For the states (i, j) mentioned above, and during its si-

multaneity service time τAB , only one new task arrival may

appear or not (if the state changes to (i+1, j)). It means that

we have here only two events (a task occurrence or not):

p0(t) + p1(t) = 1 for t = τAB, (13)

where

p0(t) = e−λ·t, p1(t) = λ · t · e−λ·t = λ · t · po(t)

and

p0(t) =
1

1 + λ · t
for t = τAB.

This is a task arrival factor. Remembering that a simul-

taneity service time τAB has the mean value equal to m∗

AB

we may calculate a mean sojourn time mAB directly from the

following relation:

mAB = m∗

AB ·p0(t) =
m∗

AB

1 + λ · m∗

AB

for t = m∗

AB. (14)

3. Quality of service parameters

and main measures of effectiveness

for a loss tandem with blocking

The procedures for calculating quality of service (QoS) para-

meters and basic measures of effectiveness use the steady-state

probabilities in the following manner:

1. Loss probability qloss:

qloss =

c+m∑
j=0

qN,j +

c+m+N∑
j=c+m+1

qc+m+N−j,j (15)
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2. Blocking probability qbl:

qbl =

N−1∑
i=0

c+m+N−i∑
j=c+m+1

qi,j (16)

3. Idle probability qidle:

qidle = q0,0 (17)

4. The average number of blocked lines (tasks) in station A:

nbl =
N−1∑
i=0

c+m+N−i∑
j=c+m+1

(j − c − m) · qi,j (18)

5. The average number of active (non-blocked) tasks in station

A:

lA =

N∑
i=1

c+m∑
j=0

i · qi,j +

N−1∑
i=1

c+m+N−i∑
j=c+m+1

i · qi,j (19)

6. The average number of tasks in station A:

nA =
N∑

i=1

c+m∑
j=0

i · qi,j+
N−1∑
i=1

c+m+N−i∑
j=c+m+1

(i + j − c − m) · qi,j

(20)

7. The average number of tasks in the buffer v:

v =

N∑
i=0

c+m∑
j=c+1

(j − c) · qi,j + m ·

N−1∑
i=0

c+m+N−i∑
j=c+m+1

qi,j (21)

8. The average number of tasks in station B (buffer + server):

nB =

N∑
i=0

c+m∑
j=1

j · qi,j + (m + c) ·

N−1∑
i=0

c+m+N−i∑
j=c+m+1

qi,j (22)

9. The average number of tasks on the service lines in sta-

tion B:

lB =

N∑
i=0

c∑
j=1

j · qi,j+c·

N∑
i=0

c+m∑
j=c+1

qi,j+c·

N−1∑
i=0

c+m+N−i∑
j=c+m+1

qi,j

(23)

10. The mean blocking time in station A:

tbl =
nbl

c · µB
(24)

11. The mean response time in station A:

qA =
1

µA
+ tbl (25)

12. The mean waiting time in the buffer:

w =
v

c · µB
(26)

13. The mean response time in station B:

qB = w +
1

µB
(27)

14. The average tandem sojourn time:

tthr =
1

µA
+ tbl + qB (28)

15. The tandem throughput parameter:

thr =
N

tthr

(29)

4. Numerical examples: Erlang-2 service time

distribution in both station

According to the initial assumptions the service time for sta-

tion A and station B has the Erlang-k distribution with the

mean value equal to m = k/µ and the distribution function

given by:

F (x) = 1 −

k−1∑
r=0

e−µ·x(µ · x)r

r!
(30)

therefore

Φ(x) = 1 − F (x) =

k−1∑
r=0

e−µ·x(µ · x)r

r!
. (31)

For Erlang-2 distribution of the service time in stations A
and B the function Φ(x) has the following form:

ΦA(x) = e−µA
·x

1∑
r=0

(µA · x)r

r!
= e−µA

·x
· (1+µA

·x) (32)

ΦB(x) = e−µB
·x

1∑
r=0

(µB · x)r

r!
= e−µB

·x
· (1+µB

·x) (33)

Then, based on expressions (10) and (11) we have:

mAB =

∞∫

0

ΦA(x) · ΦB(x)dx =

=

∞∫

0

e−µA
·x
· (1 + µA

· x) · e−µB
·x
· (1 + µB

· x)dx =

=

∞∫

0

e−(µA+µB)·x(1 + (µA + µB) · x + µA
· µB

· x2)dx =

=

∞∫

0

e−(µA+µB)·xdx+(µA + µB)

∞∫

0

x · e−(µA+µB)·xdx+

+µA
· µB

∞∫

0

x2
· e−(µA+µB)·xdx =

=
2

µA + µB
+

2 · µA · µB

(µA + µB)3

(34)

The general solution of the above integrals has the follow-

ing form:

∞∫

0

xn−1e−q·xdx =
1

qn
· (n − 1)! (35)

According to the two-dimensional state diagram for a

semi-Markov model, now we must calculate the adequate ser-

vice rates in stations A and B, indicated here as µA
exp and

µB
exp, in the equivalent model with exponential distributed

service times (see Fig. 2 and Fig. 3), thus:

µA
exp =

µA

2
µB

exp =
µB

2
(36)
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next from these formulas, we may calculate the service rates

µB
j and µA

i according to algorithms given in (1) and (2) ex-

pressions:

µB
j = µB

exp · j, for j = 0, 1, 2, . . . , c,

µB
j = µB

exp · c, for j = c + 1, c + 2, . . . , c + m + N

and the service rate µA
i for all states without blocking is:

µA
i = µA

exp · i for i = 0, 1, 2, . . . , N (37)

for all states with blocking:

µA
i = µA

exp · i + (j − c − m) · µB
exp

for

j = c+m+1, . . . , c+m+N, i = 0, 1, . . . , N + c+m− j

Based on the state diagrams from Fig. 2 and Fig. 3, the

mean sojourn time mAB and the mean simultaneity service

time m∗

AB for each state without blocking can be calculated

according to the following formulae:

m0,0 =
1

λ
,

mN,0 =
1

µA
N

,

mi,j =
2

µA + µB
+

2 · µA
i · µB

j

(µA
i + µB

j )3

for i = N, j = 1, 2, . . . , c + m,

m∗

0,j =
1

µB
j

for j = 1, 2, . . . , c + m,

m∗

i,0 =
1

µA
i

for i = 1, 2, . . . , N − 1,

m∗

i,j =
2

µA + µB
+

2 · µA
i · µB

j

(µA
i + µB

j )3

for i = 1, 2, . . . , N − 1, j = 1, 2, . . . , c + m

(38)

and for the states with blocking (here the service rates µA
i are

calculated differently):

m0,c+m+N =
1

µB
c+m+N

,

mi,j =
2

µA + µB
+

2 · µA
i · µB

j

(µA
i + µB

j )3

for j = c + m + 1, . . . , c + m + N − 1,

i = N + c + m − j,

m∗

0,j =
1

µB
j

for j = c + m + 1, . . . , c + m + N − 1,

m∗

i,j =
2

µA + µB
+

2 · µA
i · µB

j

(µA
i + µB

j )3

for j = c + m + 1, . . . , c + m + N − 2,

i = 1, . . . , N + c + m − j − 1.

In this set of expressions, all m∗

i,j can be transformed to

mi,j (mean sojourn time) directly, by using relation (14).

In this section, to demonstrate the analysis of loss tandem

with blocking, the following configuration is chosen: N = 18,

c = 6, m = 6. The service rates in stations A and B are

equal to: µA = 1.0 (the Erlang-2 distributed service time) and

µB = 1.6 (the Erlang-2 distributed service time). The inter-

arrival rate to the tandem changes within a range from 0.25

to 10.0 (for studying of a model with different utilizations).

This model has 418 states, 247 states are without blocking

and 171 states are with blocking.

For the model above, the following results were obtained,

majority of which are presented in Fig. 4, Fig. 5 and Table 1.

Fig. 4. Graphs of QoS parameters, where bloc-pr is the blocking

probability, loss-pr is the loss probability, A-utilization is the station

A utilization factor, B-utilization is the station B utilization factor,

idle-pr is the idle probability, buff-fill is the buffer filling parameter

Fig. 5. The measures related to the mean time: t-node A is the mean

response time in station A, t-node B is the mean response time in

station B, t-queue B is the mean waiting time in the buffer, t-block is

the mean blocking time, t-through is the average tandem throughput

time, throu-par tandem throughput parameter
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Table 1

The comparison of the average number of tasks in both stations

λ
The average number of tasks

Station A utilization Station B utilization
nbl vB lA lB nA nB

1.0 0.000 0.000 1.783 1.106 1.783 1.106 0.111 0.208

2.0 0.000 0.025 3.784 2.348 3.794 2.373 0.222 0.417

3.0 0.019 0.312 5.780 3.600 5.799 3.912 0.335 0.625

4.0 0.589 1.764 7.744 4.884 8.332 6.647 0.472 0.828

5.0 3.583 4.472 9.037 5.768 12.619 10.241 0.678 0.961

6.0 6.298 5.640 9.272 5.969 15.569 11.609 0.823 0.994

7.0 7.464 5.886 9.260 5.994 16.722 11.880 0.888 0.999

8.0 7.987 5.946 9.233 5.998 17.218 11.945 0.920 1.000

9.0 8.261 5.967 9.212 5.999 17.471 11.966 0.938 1.000

10.0 8.423 5.975 9.196 5.999 17.617 11.975 0.950 1.000

The results of this series of experiments show that the loss

probability, blocking probability (quality of service parame-

ters), filling buffer parameters or mean blocking times rapidly

grow when the stream intensity to the tandem increases. In

this case the number of blocked lines in the first station quick-

ly grows simultaneously when the buffer is filled quickly and

the number of rejected tasks quickly increase. Most of the

average time measures behave similarly, if stream intensity

to the tandem grows. In this situation the tandem through-

put parameter falls down, because the blocking and response

times are increased. All these negative factors depend on the

second station utilization parameter. The tandem works prop-

erly when the second station utilization parameter is less than

0.75. In the moderate utilization interval, the tandem works

properly and most of quality of service (QoS) parameter is

easy to keep at the appropriate level.

5. Conclusions

In this paper, the mathematical model of a loss two-station sto-

chastic transition system with blocking and rejection, treated

as a semi-Markov process, is presented. In this tandem mod-

el a phenomenon of blocking and rejection appears simulta-

neously and the mathematical procedures allow for calculat-

ing the main measures of effectiveness including the loss and

blocking probabilities. These measures may be calculated for

any tandem configuration if we have given service rates in

both stations and when the inter-arrival rate to the tandem is

given.

The results of experiments presented in Sec. 4 show that

depending on the model configuration and its characteristics

the mathematical modelling allows finding the proper rate

range for input stream that guarantees congestion avoidance

in the tandem. In the opposite case if one is given an input

stream rate, the analysis allows taking another model charac-

teristic, which guarantees that blocking and loss probabilities

should be in the proper range.
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