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Abstract. The problems of asymptotic stability and robust stability of the new general 2D model of scalar linear dynamic continuous-discrete

systems, standard and positive, are considered. Simple analytic conditions for asymptotic stability and for robust stability are given. These

conditions are expressed in terms of coefficients of the model. The considerations are illustrated by numerical examples. The methods

proposed can be generalized to scalar Fornasini-Marchesini and Roesser models of 2D continuous-discrete systems.
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1. Introduction

In continuous-discrete systems both continuous-time and

discrete-time components are relevant and interacting and

these components can not be separated. Such systems are

called the hybrid systems. Examples of hybrid systems can

be found in [1–3]. The problems of dynamics and control of

hybrid systems have been studied in [3–6].

In this paper we consider the continuous-discrete linear

systems whose models have structure similar to the models of

2D discrete-time linear systems. Such models, called the 2D

continuous-discrete or 2D hybrid models, have been consid-

ered in [7] in the case of positive systems.

The new general model of positive 2D hybrid linear sys-

tems has been introduced in [8] for standard and in [9] for

fractional systems. The realization and solvability problems

of positive 2D hybrid linear systems have been considered in

[7, 10, 11] and [12, 13], respectively.

The problems of stability and robust stability of 2D

continuous-discrete linear systems have been investigated in

[14–20].

The main purpose of this paper is to present simple ana-

lytical conditions for stability and for robust stability for the

new general 2D model of scalar continuous-discrete linear

systems, standard and positive.

The following notation will be used: ℜ – the set of real

numbers, Z+- the set of non-negative integers, ℜ+ = [0, ∞];
ℜn×m – the set of n × m real matrices and ℜn

+ = ℜn×1
+ .

2. Problem formulation

Consider the new general 2D model of scalar continuous-

discrete linear system (for i ∈ Z+ and t ∈ ℜ+)

ẋ1(t, i) = a11x1(t, i) + a12x2(t, i) + b1u(t, i), (1a)

x2(t, i + 1) = a21x1(t, i) + a22x2(t, i) + b2u(t, i), (1b)

y(t, i) = c1x1(t, i) + c2x2(t, i) + du(t, i), (1c)

where ẋ1(t, i) = ∂x1(t, i)/∂t, x1(t, i) ∈ ℜ, x2(t, i) ∈ ℜ,

u(t, i) ∈ ℜ, y(t, i) ∈ ℜ and a11, a12, a21, a22, b1, b2, c1, c2

and d are constant coefficients.

The general model (1) with x1(t, i) ∈ ℜn1 , x2(t, i) ∈
ℜn2 , u(t, i) ∈ ℜm, y(t, i) ∈ ℜp has been introduced in [8].

The boundary conditions for (1a) and (1b) have the form

x1(0, i) = x1(i), i ∈ Z+,

x2(t, 0) = x2(t), t ∈ ℜ+.
(2)

The model (1) can be written in the form
[

ẋ1(t, i)

x2(t, i + 1)

]

=

=

[

a11 a12

a21 a22

][

x1(t, i)

x2(t, i)

]

+

[

b1

b2

]

u(t, i),

(3a)

y(t, i) =
[

c1 c2

]

[

x1(t, i)

x2(t, i)

]

+ du(t, i). (3b)

The model (1) (or (3), equivalently) will be called the

standard new general 2D model of scalar continuous-discrete

linear system.

Definition 1. The general model (1) is called positive (in-

ternally) if x1(t, i) ≥ 0 and x2(t, i) ≥ 0 for all boundary

conditions x1(i) ≥ 0, i ∈ Z+ and x2(t) ≥ 0, t ∈ ℜ+, and all

inputs u(t, i) ≥ 0, t ∈ R+, i ∈ Z+.

Theorem 1. The general model (1) is positive (internally) if

and only if

a11 ∈ ℜ, a12, a21, a22 ≥ 0,

b1, b2 ≥ 0, c1, c2 ≥ 0, d ≥ 0.
(4)

Proof. In [8] it was shown that the system (1) with x1(t, i) ∈
ℜn1 , x2(t, i) ∈ ℜn2 , u(t, i) ∈ ℜm, y(t, i) ∈ ℜp is positive if
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and only if a11 is a Metzler n1 × n1 matrix (all of-diagonal

entries are nonnegative) and a12, a21, a22, b1, b2, c1, c2 and

d are matrices of appropriate dimensions with nonnegative

entries. The condition (4) follows directly from the above for

n1 = n2 = m = p = 1.
Characteristic function of the model (1) (and (3)) is a poly-

nomial in two independent variables s and z, of the form

w(s, z) = det

[

s − a11 −a12

−a21 z − a22

]

=

= sz − sa22 − za11 + (a11a22 − a12a21).

(5)

Definition 2. The general model (1) is called asymptotically

stable (or Hurwitz-Schur stable) if for u(t, i) ≡ 0 and bound-

ed boundary conditions (2) the condition x(t, i) → 0 holds

for t, i → ∞.

From the papers [14, 20] we have the following theorem.

Theorem 2. The general model (1) is asymptotically stable if

and only if

w(s, z) 6= 0, Re s ≥ 0, |z| ≥ 1. (6)

The polynomial (5) satisfying condition (6) is called

continuous-discrete stable (C-D stable) or Hurwitz-Schur sta-

ble [14].

Now we consider the system (1) with uncertain coefficients

a11, a12, a21, a22 and assume that

aik ∈ [a−

ik, a+

ik], i, k = 1, 2, (7)

where a−

ik and a+

ik with a−

ik < a+

ik (i, k = 1, 2) are given real

numbers.

By generalization of Definition 2 and Theorems 1 and 2

to the case of systems with uncertain parameters one obtains

the following definition and theorems.

Definition 3. The general uncertain model (1) is called robust-

ly stable if for u(t, i) ≡ 0 and bounded boundary conditions

(2) the condition x(t, i) → 0 holds for t, i → ∞ and for all

coefficients aik, i, k = 1, 2, satisfying (7).

Theorem 3. The general uncertain model (1), (7) is positive

if and only if

a11 ∈ [a−

11, a+

11] ⊂ ℜ, a−

12, a
−

21, a
−

22 ≥ 0,

b1, b2 ≥ 0, c1, c2 ≥ 0, d ≥ 0.
(8)

Theorem 4. The general uncertain model (1) is robustly sta-

ble if and only if condition (6) holds for all coefficients aik,

i, k = 1, 2, of the polynomial (5) satisfying (7).

The main purpose of this paper is to present simple analyt-

ical conditions for stability and for robust stability of general

model (1) of continuous-discrete linear systems, standard (i.e.

non-positive) and positive.

3. Solution of the problem

3.1. Conditions for stability.

Theorem 5. The general model (1) is asymptotically stable

if and only if the following two conditions hold

w(s, exp(jω)) 6= 0, Re s ≥ 0, ∀ω ∈ [0, 2π], (9)

w(jy, z) 6= 0, |z| ≥ 1, ∀y ∈ [0, ∞). (10)

Proof. From [20] it follows that (6) is equivalent to the con-

ditions

w(s, z) 6= 0, Re s ≥ 0, |z| = 1, (11)

w(s, z) 6= 0, Re s = 0, |z| ≥ 1. (12)

It is easy to see that conditions (11) and (12) can be writ-

ten in the forms (9) and (10), respectively.

Solving the equation w(s, z) = 0 for z = exp(jω), where

w(s, z) has the form (5), we obtain

s(jω) = a11 +
a12a21

exp(jω) − a22

. (13)

From (13) it follows that s(jω) is a discontinuous function

in the points ω = 0 and ω = π for a22 = 1 and a22 = −1,
respectively. Therefore, for excluding this discontinuity, we

assume that a22 6= ±1.

Substituting ω = 0 and ω = π in (13) we obtain, respec-

tively,

s0 = s(j0) = a11 +
a12a21

1 − a22

, (14)

sπ = s(jπ) = a11 −
a12a21

1 + a22

. (15)

Let s(jω) = u(ω) + jv(ω), where u(ω) = Re s(jω),
v(ω) = Im s(jω). It is easy to check that [u(ω) − sc]

2 +
v2(ω) = r2, where sc = 0.5(s0 + sπ), r = |s0 − sc|. This

means that the plot of s(jω), ω ∈ [0, 2π], is a circle with

the center sc and radius r. Hence, the condition Re s(jω) < 0
holds for all ω ∈ [0, 2π] if and only if

max

{

a11 −
a12a21

a22 − 1
, a11 −

a12a21

1 + a22

}

< 0. (16)

From the above we have the following lemma.

Lemma 1. For the general model (1) the condition (9) is

equivalent to (16).

Now we consider the condition (10).

Lemma 2. For the general model (1) the condition (10) is

equivalent to

−1 < a22 < 1 and a2
11 − (a11a22 − a12a21)

2 > 0. (17)

Proof. From (5) for s = jy we have that the root of the

equation w(jy, z) = 0 has the form

z(jy) =
jya22 − (a11a22 − a12a21)

jy − a11

. (18)

The condition (10) holds if and only if |z(jy)| < 1, ∀y ∈
ℜ, i.e.

y2(1−a2
22)+a2

11−(a11a22−a12a21)
2 > 0, ∀y ∈ ℜ. (19)

It is easy to see that (19) is equivalent to (17).

Theorem 6. The general model (1) is asymptotically stable if

and only if

−1 < a22 < 1 (20)
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and (16) is satisfied, or equivalently, one of the following

conditions holds:

a12a21 ≥ 0, a11 <
a12a21

a22 − 1
. (21)

a12a21 < 0, a11 <
a12a21

1 + a22

. (22)

Proof. It follows directly from Theorem 5 and Lemmas 1

and 2.

Example 1. Consider the model (1) with a12 = −1 and

a21 = 1. Check stability of the model for a22 = −0.5 and

a22 = 0.5.

In this case a12a21 = −1 < 0 and the necessary condition

(20) holds. From (22) it follows that the model is asymptoti-

cally stable if and only if:

• a11 < −2 for a22 = −0.5,

• a11 < −2/3 for a22 = 0.5.

In the case of positive general model (1), from Theorems 1

and 6 one obtains the following theorem.

Theorem 7. The positive general model (1) is asymptotically

stable if and only if

a12a21 ≥ 0, 0 < a22 < 1,

a11 <
a12a21

a22 − 1
.

(23)

Example 2. Let us consider positive model (1) with a12 =
a21 = 1. Check stability of the model for a22 = 0 and

a22 = 0.5.

From Theorem 7 we have that the model is positive and

asymptotically stable if and only if:

• a11 < −1 for a22 = 0,
• a11 < −2 for a22 = 0.5.

3.2. Conditions for robust stability. Let us consider two real

interval numbers A = [a−, a+], a− < a+ and B = [b−, b+],
b− < b+.

Recall, that real interval number X = [x−, x+] is the set

of real numbers x such that x− ≤ x ≤ x+.

It is well known from the interval analysis that (see [21,

22], for example)

A − B = {a − b : a ∈ A, b ∈ B} =

= [a− − b+, a+ − b−],
(24)

A · B = {a · b : a ∈ A, b ∈ B} = [α, β], (25)

where

α = min(a−b−, a−b+, a+b−, a+b+), (26)

β = max(a−b−, a−b+, a+b−, a+b+) (27)

and
A/B = {a/b : a ∈ A, b ∈ B} =

= [a−, a+] · [1/b+, 1/b−], 0 /∈ B.
(28)

Hence, for any fixed a12 ∈ [a−

12, a+

12] and a21 ∈ [a−

21, a+

21]
we have a12a21 ∈ [α−

12, α+

12], where

α−

12 = min(a−

12a
−

21, a−

12a
+

21, a+

12a
−

21, a+

12a
+

21), (29a)

α+

12 = max(a−

12a
−

21, a−

12a
+

21, a+

12a
−

21, a+

12a
+

21). (29b)

From (20) and (7) it follows that the necessary condition

for robust stability has the form

−1 < a−

22 < a+

22 < 1. (30)

Using the rules (25), (28) we obtain the following:

a12a21

a22 − 1
∈ [α1, β1], (31)

where

α1 = min

(

α−

12

a+

22
− 1

,
α−

12

a−

22
− 1

,
α+

12

a+

22
− 1

,
α+

12

a−

22
− 1

)

, (32)

β1 = max

(

α−

12

a+

22 − 1
,

α−

12

a−

22 − 1
,

α+

12

a+

22 − 1
,

α+

12

a−

22 − 1

)

(33)

and
a12a21

a22 + 1
∈ [α2, β2], (34)

where

α2 = min

(

α−

12

a+

22 + 1
,

α−

12

a−

22 + 1
,

α+

12

a+

22 + 1
,

α+

12

a−

22 + 1

)

, (35)

β2 = max

(

α−

12

a+

22 + 1
,

α−

12

a−

22 + 1
,

α+

12

a+

22 + 1
,

α+

12

a−

22 + 1

)

. (36)

Theorem 8. The general uncertain model (1), (7) is robustly

stable if and only if the necessary condition (30) is satisfied

and

a+

11 < min(α1, α2). (37)

Proof. Using the rule (24) and (7) with i = k = 1, (31), (34),

from (16) we obtain the condition max{a+

11 − α1, a+

11 −
α2} < 0, which can be written in the form (37). The proof

follows from Theorem 6.

From the above considerations the following algorithm

for robust stability analysis of the standard uncertain general

model (1), (7) follows.

Algorithm 1.

Step 1. Compute α−

12, α+

12 from (29) and α1, α2 from (32)

and (35), respectively.

Step 2. Check satisfaction of the conditions of Theorem 8.

Example 3. Find values of coefficient a11 for which the un-

certain general model (1) with a12 ∈ [−1, 2], a21 ∈ [2, 3]
and a22 ∈ [−0.5, 0.5] is robustly stable.

According to Algorithm 1 we have:

Step 1. From (29) and (32), (35) one obtains: α−

12
= −3,

α+

12 = 6, α1 = −12, α2 = −6.

Step 2. In this case the necessary condition (30) holds

and from (37) we have a+

11 < min(α1, α2) = −12. This

means that the model is robustly stable if and only if a11 ∈
(−∞, −12).
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Now we consider the following special cases:

• [α−

12
, α+

12
] ⊂ [0, ∞) ⇔ α−

12
≥ 0,

• [α−

12, α+

12] ⊂ (−∞, 0] ⇔ α+

12 ≤ 0,

where α−

12
and α+

12
are computed form (29).

Assume that the necessary condition (30) holds. From (32)

and (35) we obtain the following:

• if α−

12 ≥ 0 then

α1 =
α+

12

a+

22 − 1
< 0, α2 =

α−

12

a+

22 + 1
> 0, (38)

• if α+

12 ≤ 0 then

α1 =
α+

12

a−

22 − 1
> 0, α2 =

α−

12

a−

22 + 1
< 0. (39)

Hence, from Theorem 8 we have the following lemmas.

Lemma 3. The standard uncertain general model (1), (7) with

α−

12
≥ 0 is robustly stable if and only if

−1 < a−

22 < a+

22 < 1 and a+

11 <
α+

12

a+

22 − 1
. (40)

Lemma 4. The standard uncertain general model (1), (7) with

α+

12 ≤ 0 is robustly stable if and only if

−1 < a−

22 < a+

22 < 1 and a+

11 <
α−

12

a−

22 + 1
. (41)

In the case of positive uncertain model (1), (7) the condi-

tions (8) holds. In this case α−

12 ≥ 0. From (8) and Lemma 3

we have the following theorem.

Theorem 9. The uncertain general model (1), (7) is positive

and robustly stable if and only if

0 ≤ a−

22 < a+

22 < 1 and a+

11 <
α+

12

a+

22 − 1
. (42)

Example 4. Consider the general uncertain model (1) with

a12 ∈ [−5, −1], a21 ∈ [2, 4], a22 ∈ [−0.6, 0.6]. Find values

of the coefficient a11 for which the model is robustly stable.

In this case from (29) we have α−

12 = −20, α+

12 = −2.

Because α+

12 < 0 and (30) holds, we apply condition (41) of

Lemma 4. From this condition we have that the model is ro-

bustly stable if and only if a+

11 < α−

12/(a−

22+1) = −20/0.4 =
−50. The same result one obtains from Algorithm 1.

Example 5. Find values of the coefficient a11 for which is

robustly stable the positive uncertain general model (1) with

a12 ∈ [1, 4], a21 ∈ [2, 6] and a22 ∈ [0, 0.5].

From (29) and Theorem 9 we obtain α−

12
= 2, α+

12
= 24

and a+

11 < −24/0.5 = −48. This means that the positive

model is robustly stable if and only if a11 ∈ (−∞, −48).
The same result one obtains from Algorithm 1.

4. Concluding remarks

Simple analytical conditions for stability and for robust sta-

bility of the new general 2D model (1) of scalar continuous-

discrete linear systems, standard and positive, have been given.

These conditions are expressed in terms of the coefficients of

the model.

In particular it has been shown that:

• the general model (1) is asymptotically stable if and only

if the conditions of Theorem 6 hold,

• the general model (1) is positive and asymptotically stable

if and only if the conditions (23) hold (Theorem 7),

• the general uncertain standard model (1), (7) is robustly

stable if and only if the condition (37) holds (Theorem 8),

• the general uncertain model (1), (7) is positive and robustly

stable if and only if the conditions (42) hold (Theorem 9).
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