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Abstract. Over the years, various approaches have been proposed in order to solve the multi-objective job-shop scheduling problem –

particularly a hard combinatorial optimization problem. The paper presents an evaluation of job shop scheduling problem under multiple

objectives (mean flow time, max lateness, mean tardiness, mean weighted tardiness, mean earliness, mean weighted earliness, number of

tardy tasks). The formulation of the scheduling problem has been presented as well as the evaluation schedules for various optimality criteria.

The paper describes the basic mataheuristics used for optimization schedules and the approaches that use domination method, fuzzy method,

and analytic hierarchy proccess (AHP) for comparing schedules in accordance with multiple objectives. The effectiveness of the algorithms

has been tested on several examples and the results have been shown. New search space for evaluation and generation of schedules has been

created. The three-dimensional space can be used for the analysis and control of the production processes.
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1. Introduction

In multicriteria decision making, it is assumed that a small set

of alternatives are available from which a selection must be

made on the basis of multiple factors. Often Multi-Attribute

Utility Theory [1] is used to create a scalar-valued criterion

for selecting from the decision set. Since the individual pref-

erences of the decision maker is of prime importance in mul-

ticriteria decision making, many researches have approached

the problem using interactive methods [2].

The feasibility of schedules is evaluated for various per-

formancr criteria, which may be single or multiple. A solu-

tion that is optimal for a given criterion may not be optimal

for some other criterion. In many practical situations, it be

thus desirable to achive a solution that is best with respect to

a number of different criteria simultaneously. The research on

bi-criteria and multi-criteria scheduling can be catogorized in

four different types of models, viz: single machine-bi-criteria

scheduling, single machine-multiple criteria scheduling, mul-

tiple machine-bi-criteria scheduling and multiple machine-

multi criteria scheduling. Most of the research done so far on

multiple criteria scheduling involves only a single machine or

two-machine flow shop [3, 4]. In [5] a multi criteria dynamic

scheduling algorithm by swapping of dispatching rules that

minimizes/maximizes several performance measures simulta-

neously have been described. In [6] a hybrid metaheuristic,

the Variable Neighborhood Particle Swarm Optimization have

been introduced. The proposed method is used for solving

the multi-objective Flexible Job Shop Scheduling Problems

(FJSP). Other approaches to multi-objective decison making

are shown in [7–14].

The paper is organized as follows: Sec. 2 formulates the

flexible job shop problem (FJSP). Section 3 introduces re-

cent research in solving the scheduling problems with the

application of metaheuristics. In Sec. 4, the Pareto approach,

the fuzzy method and the analytic hierarchy process (AHP)

are used for the evaluation of the FJSP problem. In Sec. 5,

schedule cluster recognition and evaluation of dependencies

according to the data mining approach is analyzed. The rep-

resentation of schedules in search space is presented. Section

6 formulates some concluding remarks.

2. Formulation of the scheduling problem

In the job-shop scheduling problem (JSP), there are n jobs

and m machines, each job is to be processed on a group of

machines satisfying precedence constraints. Each operation

of job is to be processed onlyon one predetermined machine.

Though the JSP has benn well studied, its aplication to real-

word scenarios is often undermined by the constraint of the

one-to-one mapping of operations to machines. Hence, the

flexible job-shop scheduling problem extends the the JSP by

allowing each operations to be processed on more than ma-

chine. With this extension, we are now confronted with two

subtask: assignment of each operation to an appriopriate ma-

chine and sequencing operations on each machine.

The FJSP is formulated as follows. There is a set of jobs

Z = {Zi}, i ∈ I , where I = {1, 2, ..., n} is an admissible set

of parts, U = {uk}, k ∈ 1, m, is a set of machines. Each job

Zi is a group of parts Πi of equal partial task pi of a certain

range of production. Operations of technological processing

of the i-th part are denoted by {Oij}Hi

j=ξ . Then for Zi, we

can write Zi = (Πi{Oij}Hi

j=ξ), where Oij = (Gij , tij(N)) is

the j-th operation of processing the i-th group of parts; ξi is

the number of operation of the production process at which

one should start the processing the i-th group of parts; Hi
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is the number of the last operation for a given group; Gij is

a group of interchangeable machines that is assigned to the

operation Oij ; G is a set of all groups of machines arose

in the matrix ||{Zi}||; tij(N) is an elementary duration of

the operation Oij with one part di that depends on the num-

ber of machine N in the group (on the specified operations);

t′ij is the duration of set up before the operation Oij ; Ngr

is the number of all groups of machines. The most widely

used objective is to find feasible schedules that minimize the

completion time of the total production program, normally re-

ferred to as makespan (Cmax). To evaluate schedules we will

use performance measures or optimality criteria [15]:

schedule length (makespan)

Cmax = max{Cj}, (1)

mean flow time

F =
1

n

n
∑

j=1

Fj , (2)

or mean weighted flow time

F =
n
∑

j=1

wjFj/
n
∑

j=1

wj , (3)

max. lateness

Lmax = max{Lj}, (4)

mean tardiness

D =
1

n

n
∑

j=1

Dj , (5)

mean weighted tardiness

D =

n
∑

j=1

wjDj/

n
∑

j=1

wj , (6)

mean earliness

E =
1

n

n
∑

j=1

Ej , (7)

mean weighted earliness

E =

n
∑

j=1

wjEj/

n
∑

j=1

wj , (8)

number of tardy tasks

U =
n
∑

j=1

Uj , (9)

where Uj =

{

1 when Cj > 0

0 when Cj ≤ 0
, (10)

or weighted number of tardy tasks

Uw =

n
∑

j=1

wjUj. (11)

Flow time Fj = Cj −rj ; lateness Lj = Cj −dj ; tardiness

Dj = max{Cj −dj , 0}; earliness Ej = max{dj −Cj , 0}; rj

= arrival time; dj – due date, Tj – task; wj = priority, which

expresses relative urgency of Tj .

3. Metaheuristics used for the optimization

of schedules

In the past decades, local search approaches have become in-

creasingly popular for the resolution of complex combinator-

ial optimization problems. Often classified as so called mata-

heuristics [16–30] with the most prominent examples of Sim-

ulated Annealing, Tabu Search, and Evolutionary Algorithms.

These methods organize modification and improvement steps

for alternatives with the ultimate goal of identifying a global

optimal solution.

Own and implemented methods (partly modified because

of its specific character) have been used for analysis. The

results (with different criteria) for algorithms: 1. artificial

neural networks (ANN), 2. genetic algorithm (GA), 3. greedy

randomized adaptive search procedure (GRASP), 4. taboo

search (TS), 5. simulated annealing (SA) have been achieved

[31–33].

Below we present results a genetic algorithm AGHAR [31]

for finding efficient solutions to the FJSP problem. Genetic al-

gorithm, differing from conventional research techniques, start

with an inital set of random solutions (population). The chro-

mosomes evolve through succesive iterations (generations).

The next generation produced with the following operations:

crossover, mutation, and reproduction.

The choice of the method of repesentation of solutions for

scheduling problems is one of main stages while GA design.

The use of GA allows the choice of the certain method of

problem coding at which the specific properties of problem

solution (phenotype) are reflected in the most natural manner

using the representation (genotype).

There are different kinds of chromosome representation

for solving the FJSP. One of the approaches for representa-

tion of solutions in the problem of scheduling is the use of

permutations with repetitions. Permutations with repetitions

are connected with genes which code foreground location of

machines for seperate operations. Let us consider it on an

example (Fig. 1).

Fig. 1. Chromosome with two related lists

The first list (Fig. 1) contains natural number. Before com-

putation the program attaches to every batch of parts (a pro-

duction order) one natural number. This number is repeated

in the list so many as the number of production operations

are fulfilled on this part. The lengh of this list is equal to the

list of sequence of operations (SEQ). The list is read from

left to right. So, the first number in the SEQ list (1 in this

case) means the 1-st part. Since this number is in the first on

the left position, it means simultaneously the 1-st operation

on this part.

The second list is a natural number which determines

a machine from the group o technologically changeable ma-

chines. We shall call it the list of location of machines

(MLST). For the 1-st operation on the 1-st part, i.e. O11(Oij
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is the j-th operation of processing of the i-th part) the 1-st

machine S7 is chosen, for the next Oij – second machine S2.

The accepted in this work operator of mutation of the se-

quence of operations may be classified as order based muta-

tion. Mutation of the sequence of operations consists in ran-

dom replacement of two numbers in the SEQ list. On the

first, on the basis of the matrix of production operations one

forms a sequence of the length nM, where n is a number of

parts, M is a number of operations. Every number from the

interval (1,M ) appears so many times as production opera-

tions are fulfilled on the given part. On the second stage the

corresponding number from the interval (1,N ), where N is

a number of all operations for n parts, is assigned random-

ly to every operation Oij . Mutation of machines location for

the given production operation is connected with a random

choice of the triplet (the place in a list, part, machine) from

the MLST list and random replacement by another triplet so

that the chosen machine should satisfy the processing restric-

tions.

Translating the concepts of a GA into a working engine

involves not only desiging ways to represent the basic da-

ta structures but ways of setting the principal properties or

parameters of the genetic algorithm: population size, popu-

lation generation, maximum number of generations, type of

crossover, type of mutation, crossover rate, mutation rate.

Selecting GA parameters like mutation rate, and popula-

tion size, is very difficult due the many possible variations

in the algorithm and cost function. A GA relies on random

number generators for creating the population, mating, and

mutation. A different random number seed produces different

results. In addition there are various types of crossovers and

mutations, as well as other possibilities.

Figure 2 presents the best values of F (H) criterion

(makespan) in relation to pm and pc (for 60 generations and

500 chromosomes in the population; serial – parallel route).

The results of the experiments for the AGHAR algorithm are

also presented in Table 1.

Genetic algorithms form a family of directed optimization

and search techniques that can solve highly complex and of-

ten highly nonlinear problems. They can be used to explore

very large problem spaces and find the best solution based on

multiobjective functions under a collection of multiple con-

straints.

Fig. 2. Example of search space with AGHAR after Ref. [31]

Table 1

Example of experiment results for the AGHAR algorithm

PM PC
Makespan values for different samples [in minutes]

1 2 3 4 5 6 7

0.512 0.128 37545 36724 38155 37585 35637 39430 38822

1.000 0.450 38926 38543 37084 37065 38862 38588 40597

0.192 0.256 37368 40725 41188 38902 40709 39457 38531

0.096 0.353 37729 38707 40275 37866 39706 39514 39915

0.256 0.450 40018 35124 39795 38777 37631 38515 38777

0.064 0.256 40359 38339 36397 37939 38109 38610 39853

0.128 0.064 39775 38181 40018 37210 40112 39615 38968

0.016 0.256 41088 38055 40519 40566 39857 37301 39629

0.008 0.128 40200 41239 39281 40422 39025 40047 41556

0.008 0.256 40942 38210 38390 40132 39879 39890 35470

0.008 0.450 36868 39628 39560 39932 39959 38842 40078

0.032 0.450 37158 40589 40653 37440 37855 38031 39183

0.032 0.256 39961 38647 41262 40165 39269 35166 39483

0.032 0.128 40567 40193 39226 39579 40423 38843 39825

0.064 0.128 42941 38274 39981 39491 40111 39908 37428

0.064 0.256 38145 38874 36901 39209 38915 40416 39649

0.064 0.450 39013 39672 39344 40236 39826 39775 41053

0.128 0.353 38671 38903 39186 39422 37540 36506 38223

0.512 0.353 40968 39619 40180 39583 38870 40559 36429

0.192 0.256 37466 39257 38295 38501 38132 40304 39477

0.096 0.256 39444 38595 38905 38402 38774 38134 39817

4. Some approaches to the evaluation

of schedules

4.1. Solutions and their Pareto ranks. For a understanding

of what is a domination relation, we shall work with an ex-

ample [8, 34]. We consider a problem of evaluation schedules

with two objectives: to maximize f1 and to minimize f2. For

this problem, we find a set of solutions. This set of solutions

is represented in a plane with f1, f2 as the axes (Fig. 3). We

present comparisons between various solutions (e.g. method

GRASP – point A, ANN – point E, TS – point B, SA – point

C, GA – point D) in the Fig. 3.

Fig. 3. Representation of the solutions in the plane f1, f2

The comparison between two solutions, say P and Q, is

represented by a pair of symbols. This pair is made up of

two symbols, associated with the two objectives f1 and f2;

each of these symbols can take three values, +, − or =, ac-

cording whether P is better than, worse than or equal to Q,

considering the objective with which it is associated.
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We recall that we want to maximize f1 (solution quality

– that is minimize CPU Time) and minimize f2 (makespan).

Therefore, a point P is better than a point Q considering ob-

jective f1 if f1(P ) has a higher value than f1(Q); a point P
is better than a point Q considering objective f2 if f2(P ) has

a smaller value than f2(Q).
The following is an example of how to proceed with points

A and B of Table 2. Let us perform the comparisons:

• A is worse than B considering objective f1. Therefore, the

first element of the pair in the cell [A, B] is the sign −.

• A is worse than B considering objective f2. Therefore, the

second element of the pair in the cell [A, B] is the sign −.

If we refer to the preceding, definition, we can conclude

that solution B dominates solution A.

Table 2

Classification of solutions

A B C D E

A (−,−) (−,−) (−,−) (−,−)

B (+,+) (−,−) (−,=) (−,=)

C (+,+) (+,+) (+,+) (−,+)

D (+,+) (+,=) (−,−) (−,=)

E (+,+) (+,=) (+,−) (+,=)

Obviously, pairs in the cells of Table 2 which are sym-

metric about the principal diagonal are “complementary”.

We shall now try to extract nondominated solutions.

1. Consider point A.

• This point is dominated by the following points: B
(pair (−,−) at the intersection of row A and column

B), C (pair (−,−) at the intersection of row A and

column C), D (pair (−,−) at the intersection of row

A and column D) and E (pair (−,−) at the intersec-

tion of row A and column E).

2. Consider point B.

• This point is dominated by the following points: C
(pair (−,−) at the intersection of row B and column

C), D (pair (−,=) at the intersection of row B and

column D) and E (pair (−,=) at the intersection of

row B and column E).

• It dominates point A (pair (+,+) at the intersection

of row B and column A).

We can say that point A does not belong to the set of

nondominated solutions of rank 1, because it is possible to

find a point (B in this case) which is better than the point A
for all objectives.

After considering point C, D and E we can say that points

E and C are nondominated, and D is dominated. These points

E and C dominate points A, B and D but do not dominate

themselves.

Now, we take these two points (E and C) and remove

them from the table: they belong to the set of nondominated

points. We can sort these solutions using the rank of domi-

nation. In our example, we attribute rank 1 (because we have

finished the first comparison) to points E and C, because they

dominate all the other points but do not dominate themselves.

So, these points are Pareto optimal solutions of rank 1.

We now go back to the start and apply this rule again to

the remaining elements of the table. The remaining solutions

after points E and C have been removed are represented in

Table 3. This process stops when the set of points to be com-

pared is empty. Figure 4 represents the various points and

their ranks.

Table 3

Classification of solutions od rank 2

A B D

A (−, −) (−, −)

B (+, +) (−, =)

D (+, +) (+, =)

Fig. 4. Solutions and their Pareto ranks

4.2. The fuzzy method for evaluation of schedules. The

fuzzy sets theory allows to make decisions in the so-called

fuzzy environment, which is made of fuzzy objectives, fuzzy

constraints and a fuzzy decision.

Let us consider a certain set of options (also referred to

as choices or variants) notated using Xop = {x}. A fuzzy

objective is defined as a fuzzy set G defined in the set of op-

tions Xop. The fuzzy set G is described by the membership

function µG: Xop → [0, 1]. The function µG(x) ∈ [0, 1] for

a given x defines the membership degree of option x ∈ Xop

to the fuzzy set G (fuzzy objective). A fuzzy constraint is de-

fined as a fuzzy set C also defined in the set of options Xop.

The fuzzy set C is described by the membership function

µC : Xop → [0, 1]. The function µC(x) ∈ [0, 1] for a given

x defines the membership degree of option x ∈ Xop to the

fuzzy set C (fuzzy constraint). A fuzzy decision D is a fuzzy

set created as result of intersection of the fuzzy objective and

fuzzy constraint [35]:

D = G1 ∩ ... ∩ Gn ∩ C1 ∩ ... ∩ Cm, (12)

while

µD(x) = T {µG1(x), ..., µGn(x), µC1(x), ..., µCm(x)} (13)

for each x ∈ Xop. A maximization decision is the option

x∗ ∈ X , such as

µD(x∗) = maxµD(x), for x ∈ X. (14)

198 Bull. Pol. Ac.: Tech. 57(3) 2009



Multi-objective decision making and search space for the evaluation of production process scheduling

Table 4

Average evaluations for fuzzy sets MC and AC (and their membership degree values in parantheses)

Schedule
Criterion

(a) (b) (c) (d) (e) (f) (g) (h)

x1 4.8(1) 5.0(1) 4.7(0.8) 4.4(0.2) 4.7(1) 5.0(1) 4.7(1) 4.3(0.25)

x2 4.4(0.2) 4.7(0.8) 4.8(1) 4.4(0.2) 4.4(0.5) 4.7(1) 4.3(0.25) 4.4(0.5)

x3 4.9(1) 4.9(1) 4.6(0.6) 4.9(1) 4.9(1) 4.9(1) 4.4(0.5) 4.7(1)

x4 4.5(0.4) 4.8(1) 4.5(0.4) 5.0(1) 4.5(0.75) 4.5(0.75) 4.7(1) 4.4(0.5)

x5 5.0(1) 4.6(0.6) 4.7(0.8) 4.4(0.2) 5.0(1) 4.7(1) 4.7(1) 4.4(0.5)

x6 4.9(1) 4.5(0.4) 4.7(0.8) 4.4(0.2) 4.9(1) 4.4(0.5) 4.4(0.5) 4.5(0.75)

The intersection of fuzzy sets may be more generalny de-

fined as:

µA...B(x) = min(µA(x), µB(x)) = T (µA(x), µB(x)), (15)

where the function T is the so-called t-norm.

We analized schedule on the following criteria: (a) sched-

ule length, (b) mean flow time, (c) max. lateness, (d) mean

tardiness, (e) mean weighted tardiness, (f) mean weighted ear-

liness, (g) number of tardy tasks, and (h) weighted number of

tardy tasks.

The word the best is a linguistic value, which was de-

scribed separately for main (a)-(d) criteria (MC) and auxiliary

(e)-(h) criteria (AC), assuming that the interval of marks is

< 2,5 >.

The membership functions of fuzzy sets MC and AC are

the following:

µMC(x) =











0

(x − 4.3)/0.5

1

for 1 ≤ x ≤ 4.3

for 4.3 < x ≤ 4.8

for 4.8 < x ≤ 5

(16)

and

µAC(x) =











0

(x − 4.2)/0.4

1

for 2 < x < 4.2

for 4.2 < x < 4.6

for 4.6 < x < 5

(17)

The set for assessment of schedules is Xop = {x1, x2, x3,

x4, x5, x6}. By substituting the average of schedules’ marks in

main criterion (a)-(d) to formula (16), we obtain membership

degrees to the fuzzy set set MC. Similarly, by substituting

the average of schedules’ marks in auxiliary criteria (e)-(h)

to formula (17), we obtain membership degrees to the fuzzy

set AC. Table 4 contains the average evaluations and (values

of membership degrees) to fuzzy sets MC and AC.

The next step is to create fuzzy sets corresponding to the

data included in Table 4.

“The best in schedule length” = G1 = 1/x1 + 0.2/x2 +
1/x3 + 0.4/x4 + 1/x5 + 1/x6

“The best in mean flow time” = G2 = 1/x1 + 0.8/x2 +
1/x3 + 1/x4 + 0.6/x5 + 0.4/x6

“The best in max. lateness” = G3 = 0.8/x1 + 1/x2 +
0.6/x3 + 0.4/x4 + 0.8/x5 + 0.8/x6

“The best in mean tardiness” = G4 = 0.2/x1 + 0.2/x2 +
1/x3 + 1/x4 + 0.2/x5 + 0.2/x6

“The best in mean weighted tardiness” = G5 = 1/x1 +
0.5/x2 + 1/x3 + 0.75/x4 + 1/x5 + 1/x6

“The best in mean weighted earliness” = G6 = 1/x1 +
1/x2 + 1/x3 + 0.75/x4 + 1/x5 + 0.5/x6

“The best in mumber tardy task” = G7 = 1/x1+0.25/x2+
0.5/x3 + 1/x4 + 1/x5 + 0.5/x6

“The best in weighted number of tardy tasks” = G8 =
0.25/x1 + 0.5/x2 + 1/x3 + 0.5/x4 + 0.5/x5 + 0.75/x6

By substituting the data to formula (12), we obtain

D = G1 ∩ G2 ∩ G3 ∩ G4 ∩ G5 ∩ G6 ∩ G7 ∩ G8.

The fuzzy decision of the minimum type has the form:

D = 0.2/x1 + 0.2/x2 + 0.5/x3 + 0.4/x4 + 0.2/x5 + 0.2/x6.

The schedule x3 is characterized by the greatest member-

ship degree and therefore he will be accepted.

4.3. Decision making using analytic hierarchy process

(AHP). AHP is designed for situations in which evaluations

are quantified to provide a numeric scale for prioritizing the

alternatives [36].

The multiobjective decision making method enables one

to take into account many different criteria which were used

for the result evaluation, obtained with a number of methods

in a number of experiments.

The structure of the decision problem is summarized in

Fig. 5. The problem involves two hierarchies with five criteria

and five decision alternatives (methods – GRASP, ANN, TS,

SA, and GA).

Fig. 5. Structure of decision process for the problem
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Table 5

Values of criteria optimization (for Simulated Annealing)

Criteria of optimization Values of criteria
Number of job

1 2 3 4 5 6 7 8 9 10

Makespan 50242.2

wj 3 3 3 3 2 2 2 1 1 1

Mean F 39459.6

w∗

j Fj 61463.7 108592.2 135174.0 160727.0 77987.2 70579.2 16252.8 33742.6 49423.4 47034.5

Mean weighted F 38617.9

Lmax = max{Lj} 487.9

Mean D 149.1

w∗

j Dj 1463.7 592.2 174.3 0.0 0.0 579.2 0.0 0.0Y 423.4 34.5

Mean weighted D 156.6

Mean E 189.5

w∗

JEj 0.0 0.0 0.0 2273.4 12.8 0.0 1747.2 257.4 0.0 0.0

Mean weighted E 204.3

U 6

w∗

j Uj 3 3 3 0 0 2 0 0 1 1

The first hierarchy represents several experiments (weights

these experiments are equal a=b=...=z). The second hierarchy

demonstrates criteria: C – schedule length (makespan), F –

mean flow time, L – max. lateness, D – mean tardiness, and

E – mean earliness.

Values of criteria optimization for SA and other algorithms

are described in Table 5 and Figs. 6–7.

Fig. 6. Values of criteria optimization for other algorithms

Fig. 7. Values other of criteria optimization for algorithms

These criteria represent different weights (from a1 to a5)

because some of them are more important than others, e.g. the

most important is the makespan being 3 times as important

as the mean flow time.

For any schedule generated by each method, values of the

above mentioned schedule evaluation criteria are calculated.

The alternatives have weights from a11 to a55. The weights

of individual hierarchies must add up to 1, e.g.

a1 + a2 + a3 + a4 + a5 = 1,

a11 + a12 + a13 + a14 + a15 = 1.

The crux of AHP is determination of the relative weights

to rank the decision alternatives. Assuming that we are deal-

ing with n criteria at a given hierarchy, the procedure estab-

lishes an n × n pairwise comparison matrix, A, that quan-

tifies the decision maker’s judgment regarding the relative

importance of the different criteria. The pairwise compari-

son is made such that the criterion in row i(i = 1, 2, ..., n)
is ranked relative to every other criterion. Letting aij de-

fine the element (i, j) of A, AHP uses a discrete scale

from 1 to 9 in which aij = 1 signifies that i and j are

of equal importance, aij = 5 indicates that i is strong-

ly more important than j, and aij = 9 indicates that i is

extremely more important than j. Other intermediate val-

ues between 1 and 9 are interpreted correspondingly. Con-

sistency in judgement requires that aij = k automatically

implies that aji = 1/k. Also, all the diagonal elements aii

of A must equal 1, because they rank a criterion against it-

self.

Stages of AHP method are as follows [37]:

1. Determination of the comparison matrix (for the criteria).

To show how the comparison matrix is determined for this

decision problem, we start with the hierarchy dealing with

criteria (Fig. 5). In expert’s judgment, is that C – makespan,

is strongly more important than L – max. lateness, and hence

a13 = 4, and this assignment automatically implies that

a31 = 1/4 = 0.25.
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A =

C

F

L

D

E

C
















1

0.333

0.250

0.500

0.250

F

3.000

1

0.750

1.500

0.750

L

4.000

1.333

1

2.000

1.000

D

2.000

0.667

0.500

1

0.500

E

4.000

1.333

1.000

2.000

1

















.

2. The relative weights of criteria C, F , L, D and E can be

determined from A by normalizing it into a new matrix N .

The process requires dividing the elements of each column by

the sum of the elements of the same column. In our example

the sum of elements for each column of matrix A is equal:

2.33; 7.00; 9.33; 4.67 and 9.33. The process requires dividing

the elements of column 1 by 2.33, and those of column 2 by

7.00 etc. and normalized matrix is determined.

N =

C

F

L

D

E

C
















0.429

0.143

0.107

0.214

0.107

F

0.429

0.143

0.107

0.214

0.107

L

0.429

0.143

0.107

0.214

0.107

L

0.429

0.143

0.107

0.214

0.107

E

0.429

0.143

0.107

0.214

0.107

















.

The columns of N are identical, a characteristic that oc-

curs only when the decision maker exhibits perfect consisten-

cy in specifying the entries of the comparison matrix A.

3. The relative weights w of the criteria are then computed

as the row average

(wC , wF , wL, wD, wE) =

= (0, 429; 0, 143; 0, 107; 0, 214; 0, 107).

4. Determinate of the comparison matrix (for alternatives).

At this stage when ranking an alternative (of the method) in

relation to any other one we will use the values of the results

obtained by different algorithms. For instance we will con-

sider the values of mean flow time criterion – F for ANN

(F = 39156.70) and for SA (F = 39459.57). It can be seen

that (flow time for SA consist 0.992 flow time value for ANN)

(39156.70/39459.57 = 0.992) and this value will be written

into the created comparison matrix AF as a42. The inverse

value a24 = 1.008 will be obtained by calculating 1/0.992.

Values for different algorithms shows Table 6.

Table 6

Values for different algorithms

GRASP ANN TS SA GA

Makespan

Cmax = max{Cj} 50242.2 50242.2 50242.2 50242.2 50242.2

Mean F 33601.7 39156.7 36514.8 39459.6 33734.4

Lmax = max{Lj} 2918.6 15433.8 4848.8 487.9 11790.5

Mean D 500.1 2639.9 1126.9 149.1 1922.2

Mean E 6398.4 2983.2 4112.1 189.5 7687.8

Out of the comparison matrices A, F , L, D and E, matrix

AF is shown:

AF =

GRASP

ANN

TS

SA

GA

GRASP
















1

0.858

0.920

0.852

0.996

ANN

1.165

1

1.072

0.992

1.161

TS

1.087

0.933

1

0.925

1.082

SA

1.174

1.008

1.081

1

1.170

GA

1.004

0.862

0.924

0.855

1

















.

5. From matrix A we determine the matrice of the normal-

ized values N for the alternatives. It will be done similar to

stage 2, i.e. by dividing each element of matrix A by the sum

of the elements in the same column. Using the values of sums

of individual matrices, we divide for example the elements of

the first column in matrix AC by 5, of the second column

by 5, and so on, obtaining a matrix of normalized values –

matrix NC . In a similar way we obtain the other N matrices.

One of the normalized matrices is shown below:

NF =

GRASP

ANN

TS

SA

GA

GRASP
















0.216

0.186

0.199

0.184

0.215

ANN

0.216

0.186

0.199

0.184

0.215

TS

0.216

0.186

0.199

0.184

0.215

SA

0.216

0.186

0.199

0.184

0.215

GA

0.216

0.186

0.199

0.184

0.215

















.

6. At stage 6 (just as at stage 3) we calculate the relative

weights w for the alternatives as the average for each row of

the normalized values matrix:

(wF (GRASP ), wF (ANN), wF (TS), wF (SA), wF (GA)) =

= (0, 216; 0, 186; 0, 199; 0, 184; 0, 215).

As an example we calculated one of the weights of matrix

NF for the fourth alternative. It is wF = 0.184.

7. Finaly we classify each method (algorithm), which is show

in the calculations below as well as in Fig. 8.

Fig. 8. Comparison results of algorithms

GRASP = 1∗(0.429∗0.200 + 0.143∗0.216 + 0.107∗0.125+

+0.214∗0.191 + 0.107∗0.299) = 0.203

SN = 1∗(0.429∗0.200 + 0.143∗0.186 + 0.107∗0.024+

+0.214∗0.036 + 0.107∗0.140) = 0.137

TABU = 1∗(0.429∗0.200 + 0.143∗0.199 + 0.107∗0.075+

+0.214∗0.085 + 0.107∗0.192) = 0.161

SA = 1∗(0.429∗0.200 + 0.143∗0.184 + 0.107∗0.746+

+0.214∗0.639 + 0.107∗0.009) = 0.330
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WG = 1∗(0.429∗0.200 + 0.143∗0.215 + 0.107∗0.031+

+0.214∗0.050 + 0.107∗0.360) = 0.169

5. Schedule representation in search space

5.1. Generation of job sequences using the function q(j).

Some methods used to generation of the permutations are

showed in [38].

In the partially ordered set of all the permutations there

exist two “extreme” permutations, one of which precedes all

of them and the second one comes after all of them. They

are, respectively, the identical permutation JT ∆
= {1, 2, ..., n}

and the one that is inverse (opposite) with respect to it,

J−T ∆
= {n, n − 1, ..., 1}. Because of the partial ordering of

Σn we cannot control the permutation choice in a determined

manner varying Q(j). However, some “partial controllability”

is possible; in this case:

a) the lower is progression ratio Q, the higher is the proba-

bility of choice of the permutation JT ,

b) when Q = 1, all the subintervals are of equal lengths and

σR
j will be yielded as “absolutely random”,

c) the greater is Q, the higher is the probability to obtain the

inverse permutations J−T .

In the first two algorithms in the matrix of route ‖Oij‖
whose rows are the “generalized” operations three “support-

ing” operations are selected: first, intermediate and final (j =
1, j = jav, j = M ), where jav = (M +1)/2 under which the

sequence of the triples {Ol (1) , Ql (jc) , Ql (M)} ∆
= {Ql}, is

specified in definite way, where l = 1, lmax.

In algorithms 1 and 2 for the intermediate operations

(1 < j < jc and jav < j < M ) the function Q(j) can

be calculated by the linear or exponential interpolation.

Now let us speak about the differences between these

algorithms. The first algorithm chooses Q(j) where j ∈
{1, jav, M} is some discretization of segment [qmin, qmax],

where qmin = lnQmin, qmax = lnQmax. In this case the al-

gorithm performs the complete sorting-out of all the triples

q ∈ Ξ × Ξ × Ξ.

In order to make it possible to take the discretization

Ξ × Ξ × Ξ as the uniform one we shall work not with the

value Q but with the value q = lnQ. The linear interpola-

tion for q(j) corresponds to the exponential one used when

constructing Q(j) (Fig. 9).

Fig. 9. Example function q(j)

Algorithm 1 possesses some “redundancy”. For example,

the function q(j) (broken lines) that are located near q(j) ∼ 0
can generated schedules with similar characteristics, because

the permutations during every operation are obtained as “pure-

ly random”.

We proposes the modification for algorithm 1 when for

three base operations j = 1, jav = (M + 1)/2, j = M the

limits Qmin and Qmax are choosen as the different ones, i.e.

the “framing hexagon” is obtained instead of the rectangle as

in algorithm 1.

Algorithm 2 possesses the lower “redundancy”. In this al-

gorithm the correct specification of the lower an the upper

limits of changes of q is also important. Also, in this algo-

rithm the functions q(j) are generated each of which com-

pletely fills the segment [qmin, qmax] with its values; here

qmin = lnQmin, qmax = lnQmax. It is assumed that the cor-

rect choice of the segment [qmin, qmax] should be made in

the algorithm teaching process.

Algorithm 3, as opposed to the previous ones, constructs

the parabolic function q(j). It is not less time-saving when

compared with algorithm 2 but essentially differs from it by

the way of parametrization and parameter q variation. Thus,

we look for the parabol a each of which fills the interval [1,

M ] with its values on the segment [qmin, qmax]. Since the

rectangle bounded by the lines q = qmax, q = qmin, j = 1,

j = M has two axes of symmetry, then proceeding from each

constructed parabola we can receive three more parabolas by

way of symmetric transformation :

a) with respect to the axis q = 0,

b) with respect to the axis j = (M + 1)/2,

c) with respect to both axes simultaneously.

Assume that it is required to determine the best sequence

of jobs for the performance based on an accepted test the

choice. Let a proposition (statement) of the form “a structure

of sequence of jobs q (1), q(jav), q(M) is the best for the

accepted test F ” be given. Depending on the control parame-

ter q, the corresponding fuzzy truth values can be assigned to

this proposition.

Consider the definition of the standard fuzzy truth values.

According to [39], a fuzzy truth value τ is defined as a fuzzy

set of membership functions µτ : [0, 1] → [0, 1]. Moreover,

the truth value is assumed to be a linguistic variable whose

set of terms T (τ ) is an enumerated set of the form T (τ ) =

{“true”, “not true”, “very false”, “to some extent true”, “true

by all likelihood”, “not very true”, “not very false”, “false”,

...}. Each element of this set is identified with a certain fuzzy

set in the subset of truth values, i.e., within [0,1]. If a defined

proposition with a fuzzy truth value has properly the form

“u = R”, where R is a certain fuzzy set, R ⊆ X , and its

fuzzy truth value is equal to τ , τ ⊆ [0,1], then we can write

(u = R) = τ .

Consider the Baldwin approach [39] to the definition of

the standard fuzzy truth values. In the approach, member-

ship functions of the main fuzzy truth values (such as “true”,

“not true”, “very true”, “certainly true”, etc.) are defined as

some functions [0,1] → [0,1]; moreover, this author uses the
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following arguments. If we have the proposition (u = R) =

“true”, then it should be “logically” equivalent to the propo-

sition u = R. Then the fuzzy truth value that corresponds

to the term “true” should be defined using the membership

function: µ is “true” (υ) = υ and µ is “not true” (υ) = 1−υ,

∀υ ∈ [0, 1]. Other more complicated forms of fuzzy truth val-

ues are defined as follows (in a plane with x, y, as the axes,

where x = v, y = µ(v)):
µ is “very true” (υ) = (µ “true” (υ))2 = υ2, ∀υ ∈ [0, 1];
µ is “very not true” (υ) = (µ “not true” (υ))2 = (1 − υ)2,

∀υ ∈ [0, 1];
µ is “sufficiently true” (υ) = (µ is “true” (υ)1/2 =

√
υ,

∀υ ∈ [0, 1];
µ is “sufficiently not true” (υ) = (µ is “not true” (υ))1/2 =√

1 − υ, ∀υ ∈ [0, 1];
µ is “absolutely true” (υ) = 1, υ = 1 and (v) = 0, ∀υ ∈ [0, 1];
µ is “absolutely not true” (υ) = 1, υ = 0 and (v) = 0,

∀υ ∈ [0, 1];
µ is “indefinite” (υ) = 1, ∀υ ∈ [0, 1].

Variants of the job sequence structure in the function q(j)
and fuzzy verity values for the proposition φ shown in Fig. 10.

Fig. 10. Variants of the structure of sequence of jobs in the function

q(j) and fuzzy values of verity for the proposition ϕ

Let us introduce the definition of the membership func-

tion of a fuzzy set µq of the type “ordering” of jobs from the

sequence JT to the inverse one J−T whose linguistic vari-

ables have the form (“according to the given permutation”,

“very close to the given permutation”, “close to the given

permutation”, “far from the given permutation”, “close to the

reverse permutation”, “very close to the reverse permutation”,

“the permutation that is reverse to the given one”), where

X = {(1, 2, 3, ..., n− 1, n), ..., (n, n − 1, ..., 3, 2, 1)}.

If in the process of choice of the sequence jobs (for a def-

inite structure of real data such as the performance time of

operation, the number of machines, etc.), we assign the values

equal to the values in Fig. 10, that is 1. qmin, ∀j ∈ [1, M ];
2. from qmin to qav, ∀j ∈ [1, M/2]; 3. qav, ∀j ∈ [1, M/2];
4. from qmax to qav , ∀j ∈ [1, M/2]; 5. from qav, to qmin,

∀j ∈ [M/2, M ]; 6. qav, ∀j ∈ [M/2, M ]; 7. qav to qmax,

∀j ∈ [M/2, M ]; 8. qmax, ∀j ∈ [1, M ]. Then the fuzzy values

of truthness for the proposition φ “a structure of sequence of

jobs that is the best for process production with the minimal

total time” take the values (depending on the structure of the

data) corresponding linguistic values from the set of terms:

very true, true, ambiguous, sufficiently true, not very true,

false, very false; in our case, they are respectively 2 and 5 for

very true, 2 and 7 for true, 3 and 6 also for true, 1, 3 and 5

for sufficiently true, 3 and 7 also for true, 4 and 5 for not very

true, 4 and 7 for false, 8 for very false.

5.2. Schedule cluster recognition for job shop problem

and creating the rules. Inverse problem to generation per-

mutations is representation of results simulation process. We

wish to determine if a cluster of events has occurred. By clus-

ter, we mean that more occurrences of an event are observed

than would normally be expected [40–42].

To construct a grid we use following approach. Denote by

JT and J−T the identical and inverse permutations. We in-

troduce the area, where y = q (j) – permutations, and x = j
– process operation. We connect three points corresponding

to qmin and qmax on the all operations by a curve (it is se-

quence). Sequences are generated by the optimization algo-

rithm (for example simulated annealing, taboo method, and

other mataheuristic) many times (e.g. 1000) in the clustering

process. Structures for some of sequences shown in Fig. 11.

Fig. 11. Example some of schedules
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An example can be an area which is divided into a grid

of 15 × 50 = 750 cells as shown in Fig. 11.

Figure 11 shows two sets of two-dimensional points. In

this example (one schedule consists of 15 points) three sched-

ules occur 15∗3/750 = 0.06 of the time 6%. One might be

inclined to call this shaded area a cluster. But how probable

is this cluster? And how can we make a decision to either

accept the hypothesis that this area is a cluster or to reject it?

When we say that we select n – permutations at random,

we mean that each of the n! permutations of lenght n are

choosen with probability 1/n!. Probability of success (that is,

the event that p has property A) is definied as the number

of favorable outcomes of our random choice divided by the

number of all outcomes.

To arrive at a decision we use a Bayesian approach [43].

It computes the odds ratio against the occurrence of a cluster

(or in favor of no cluster), which is defined as odds = P [no

cluster | observed data] / P [cluster | observed data].

If this number is large, typically much greater than one,

we would be inclined to reject the hypothesis of a cluster, and

otherwise, to accept it. We can use Bayes’ theorem to evaluate

the odds ratio by letting B = {cluster} and A = {observed

data}. Then,

odds =
P [Bc|A]

P [B|A]
=

P [A|Bc]P [Bc]

P [A|B]P [B]
. (18)

To evaluate this we need to determine P [B], P [A|Bc],
P [A|B]. The first probability P [B] is the prior probability

of a cluster. Since we belive a cluster is quite unlikely, we

assign a probability of 10−6 to this. Next we need P [A|Bc]

or the probability of the observed data if there is no cluster.

Since each cell can take on only one of two values, either

a hit or no hit, and if we assume that the outcomes of the

various cells are independent of each other, we can model the

data as a Bernoulli sequence. For this problem, we might be

tempted to call it a Bernoulli array but the determination of

the probabilities will of course proceed as usual. If M cells

are contained in the supposed cluster area (shown as shad-

ed in Fig. 12 with M = 200 i.e. three grey area), then the

probability of k hits is given by the binomial law:

P [k] =

(

M

k

)

pk(1 − p)M−k. (19)

Next must assign values to p under the hypothesis of

a cluster present and no cluster present. From Fig. 11 in which

we did not suspect a cluster, the relative frequency of hits was

about 0.147 so that assume pnc = 0.147 when there is no

cluster. When we belive a cluster is present, we assume that

pc ∼ 0.3 in accordance with the relative frequency of hits in

the shaded area of Fig. 12, which is 59/200 = 0.295. Thus,

P [A|BC ] = P [observed data|no cluster] =

=

(

M

k

)

pk
nc(1 − pnc)

M−k =

(

200

59

)

0.14759(0.853)141,

P [A|B] = P [observed data|cluster] =

=

(

M

k

)

pk
c (1 − pc)

M−k =

(

200

59

)

(0.295)59(0.705)141,

odds =
P [A|Bc]P [Bc]

P [A|B]P [B]
=

=
0.14759(0.853)141(1 − 10−6)

(0.295)59(0.705)141(10−6)
= 0.66,

which results odds < 1.

Fig. 12. View in the jq-plane

Since the posterior probability of no cluster is 0.66 times

larger than the posterior probability of a cluster, we would

accepted the hypothesis of a cluster present.

Figure 12 show the points plotted in the the jq-plane.

When we consider the q axis, we see four sets of points.

One is from the circle and triangle (white points) that do not

form a set in the full space, one consists of the square and

triangle (black points) for average j, and two consists of the

circe and triangle (black points) and square (white points) for

first and last j.

Clustering is often performed as a preliminary step in a da-

ta mining process, with the resulting clusters being used as

further inputs into a different technique (e.g neural networks).

Data mining may be defined as the discovery of unexpected
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relationships by analyzing such large volumes of data that au-

tomated processes are necessary. The extracted knowledge is

expressed as a model or a pattern sets of rules or clusters for

instance.

Numerous algorithm have been proposed for rule induc-

tion from data in the machine learning literature. One tech-

nique for generating a set of individually interesting and use-

ful rules is to build a classification tree and to evaluate each

of the branches as individual rules according to specific tar-

geted quality criteria. But some rules produced by standard

classification make no sense to the user since they use biases

and specific heuristic to generate the classifier. Thus this kind

of technique may loose interesting rules. On the other hand,

association rules are among the most popular representation

for local paterns in data mining. In these rules the target is

not predifined and the right-hand side of such a rule may be

a conjuction of attribute-value terms.

There are a wide variety of methods for converting clus-

ters into rules. Many of these approaches attempt to generate

rules from fuzzy clusters through a reductionist approach that

treats the clusters and the data cloud around them as binary

classification points. Much of the underlying algorithmic work

is concerned with inducing a membership framework from the

cluster centers so that the control rules can be induced. These

approaches generally ignore the more straightforward use of

approximation hedges to convert cluster centroids into fuzzy

numbers with finely tuned expectancy (width) values. By us-

ing hedges we can treat one dimension of the data space as

an outcome and the remaining dimensions as rule predicates.

Cluster centers as fuzzy numbers is reletively easy the ap-

proach (when we treat the center of a cluster as the center of

a bell-shaped fuzzy set). The closer a point is to the center of

the cluster the higher its membership in the center’s fuzzy set.

In this approach, the actual degree of membership in cluster,

computed by the clustering algorithm, is essentially lost.

If the data N dimensions and there are K clusters, we

can induce K rules with N -1 predicates. That is, each cluster

forms a fuzzy rule in the data classification space. To illus-

trate, let q (1), qav, and q(M) be data vectors. Let C1 (q (1)i,
qavi, q(M)i) and C2 (q (1)i, qavi, q(M)i) be the centers

(centrids) of the clustering of (q (1), qav , and q(M)). From

the clustering we can induce the following rules:

IF q (1) is about C1(q (1)) and qav is about C1(qav), then

q(M) is near C1(q(M)),

IF q (1) is about C2(q (1)) and qav is about C2(qav), then

q(M) is near C2(q(M)).

The expectancy of the about hedge reflects the compact-

ness of the cluster. Compact clusters have larger (wider) ex-

pactencies, whereas less compact clusters have larger (wider)

expectancies.

5.3. Evaluation of scheduling processes in the objec-

tive space. One other difference between single-objective

and multi-objective (MO) optimization is that in multi-

objective optimization (MOO) the objective functions con-

stitute a multi-dimensional space, in addition to the usual de-

cision variable space common to all optimization problems.

This additional space is called the objective space, Z . For each

solution x in the decision variable space, there exists a point

in objective space, denoted by f(x) = (y1, y2, ..., yR)T .

The mapping takes place between an n-dimensional solution

vector and an R-dimensional objective vector.

The search space is shown in a system of coordinates (j,

k, q) too, where j – the number of the operation, k = n/m
– the coefficient of the operation/machine type (n – number

of parts, m – number of machines), q – sequence of parts in

j-operation [qT = {1, ..., n}; q−T = {n, ..., 1}] (Fig. 13).

Fig. 13. The search space (decision variable space) and evaluation

of schedules in objective space

Let D be the set of sequences, where each sequence q in

D represents a set of sequences q(j) contained in I , where

(j ∈ 1, M ). Suppose that we have a particular set of sequences

q(j) (e.g., q (1) = qmin, q (2) = qav , and q (3) = qmax), and

another set of items B (e.g., q (1) = qav , q (2) = qmax, and

q (3) = qmin). Then an association rule takes the form if A,

then B (i.e., A ⇒ B), where the antecedent A and the con-

sequent B are proper subsets of I , and A and B are mutually

exclusive [44, 45].
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Fig. 14. A production system experiment (1. trajectory from schedule algorithm, 2. trajectory from system, 3. control trajectory)

In our case we have:

IF (q1, k1; ...; qav, kav; ...; qM , kM ), THEN (y1, y2, ..., yR)
or IF algorithm a, THEN (y1a, y2a, ..., yRa)
...

IF algorithm n THEN (y1n, y2n, ..., yRn).
If standard algorithms are involved, the rule selection ac-

cording to multiple criteria is made as postprocessing the set

of rules extracted first by the algorithm. This approach may

result in unidiscovered interesting rules. Few non-standard ap-

proaches have been proposed in order to apply a multiple cri-

teria selection. In the context which we consider, i.e. the data

mining and particulalarly the extraction of rules, few works

related to metaheuristics in muti-objective optimization exist.

For a given data structure {tij , t′ij , m, Zi} we can spec-

ify trajectory carried out by the schedule algorithm (ie. for

each j operation specify q, n/m values). Similarly, as we can

generate with a relatively high probability of a particular se-

quence of parts (as shown above), it is also inversely with

specific sequence parts can most likely determine its degree

of belonging to the scope [qT , q−T ].

At the each period time (operation j) q and n/m control

variables (decision variables) determinate sure the state of the

production system (scope [T0, Tk]). For the transition produc-

tion system by the state in point T0 to the state in point Tk

should be determined the transition trajectory (Fig. 14).

The result of the process control is achieved by the pro-

duction system a particular goal referred to the final point Tk

of the desired trajectory (in our case, the characteristics of

time).

Although the the search process of an algorithm takes

place on the decision variables space, many algorithms, partic-

ulary multi-objective evolutionary algorithms (MOEAs), use

the objective space information in their search operators. How-

ever, the presence of two different spaces introduces a number

of interesting flexibilities in designing a search algorithm for

MOO.

5.4. The adaptive schedule parameter optimization and

adaptive search space. A schedule relies on the accuracy

of its constraints and its parameters. Many of the parameters

in schedule are often difficult to predict and establish with

a high degree of certainty. The relative precision of parame-

ter values affects not only the outcome of the schedule but the

way in which optimization is achieved. The are several critical

factors (or parameters) that are especially important in evolv-

ing a workable and effective job schedule. These include the

following: job duration times, machine efficiencies, available

machine times, number machine and job prioritization.

One of approache to the adaptive schedule parameter op-

timization is discribed in [44] and can be used in our case.

This approache include the following (Fig. 15).

Fig. 15. The adaptive schedule parameter optimization (on base after

Ref. [44])

• The job sequencer (this facility is used to order jobs that

have predecosser relationships);

• The machine scheduler (manages all constraint conditions

and objective functions for the current schedule process);

• The genetic optimizer (solves the underlying multicon-

straint, multiobjective schedule through the parallel ex-

ploration and convergence through a large n-dimensional

space of candidate schedules – the genetic optimizer ex-

plores this space by creating a random of machine-feasible

and time-feasible schedules);

• The resource-constrained scheduler (generates a complete

feasible schedule and takes a candidate-time and machine-

feasible and turns it into a working schedule by attempting

to start each job at its earliest possible time);
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• The precedence analyzer (manages the topological relation-

ships among the various jobs);

• The auditing facility (allows the analyst to expose a con-

siderable amount of the fine-grain details in all scheduling

components);

• The current schedule ( is generated from the mixture of ma-

chines and jobs based on the set of constraint parameters,

such as estimated job duration times, machine avalability);

• The actual job completion statistics (in most cases the ac-

quisition of job completion statistics is fairly straightfor-

ward and is derived form the field service report associated

with the job);

• The job history repository (provides the foundation for

learning about the past and predicting the future – each

current schedule is transformated into a set of descriptive

statistics that is used by the learning machanism);

• Parameter estimates (this is the result of the statistical

learning and rule extraction – a collection of estimates

for each of the underlying parameters associated with the

schedule. The parameter estimates are designed to coincide

with the actual schedule parameters);

• The feedback loop (the current generation of parameter

estimates is fed back into the genetic scheduler and the re-

source constraint scheduler to produce the next-generation

schedule. The actual completion statistics for this schedule

are then used to compute or refine the parameters, thus

completing the feedback loop).

The machine learning facilities are the core of parame-

ter optimization. The first component of this system is based

on statistical learning theory and extracts, from the historical

database and from the differences between the planned and

actual schedules (the value for each parameter over time). The

second component of the machine learning system is a very

advanced and very deep pattern recognition processor.

Using a form of data mining, this process extracts behavior

rules in the form of fuzzy logic from the historical database.

These rules are stored in a knowledge base and used to make

fine-grain classification and categorization decisions.

One of the reqiurements in evolutionary optimization (EO)

is that the boundary of all feasible regions in the parameter do-

main must be predefined a priori to an evolution process. Ge-

netic operations such as crossover and mutation can be viewed

as the basis of inductive learning in a human brain, where the

induction and recombination o knowlegde take place [46]. If

the candidate solutions are regarded as knowledge stored in

a human brain, the evolution toward the global optimum is

similar to the route of the investigation process, while the

parameter search space in EO can be viewed as the experi-

mental region interest in human brain. The region of interest

may change through the deductive learning process, and the

search space in EO can be dynamic and learned in a deduc-

tive manner where analysis and reasoning take place. In the

general structure of inductive-deductive learning for EO, at

each generation, the genetic evolution performs an inductive

learning where knowledge in the form of candidate solutions

is induced through the genetic operations for previous solu-

tions. Then statistical information is acquired from the dis-

tribution of induced candidates and applied to the deductive

learning process. In deductive learning, analysis and reasoning

are performed based on heuristic rules to determine the next

search space of interest in the parameter domain for inductive

learnig. Since fitness information of the evolved candidates is

not required in the updating rule, the adaptive search space

approach can be directly applied to most evolutionary algo-

rithm, for both single-objective and multiobjective optimiza-

tion problems.

6. Conclusions

In this paper we have outlined the domination method, fuzzy

method and AHP methodology used in supporting the de-

cision maker in solving multi-objective problem. The basic

mataheuristics applied for schedule optimization have been

described. Schedule evaluation, using various optimality cri-

teria has been presented. We demonstrated interdependencies

between several objectives (makespan, mean flow time, mean

weighted flow time, max. lateness, mean tardiness etc).

An approach for presenting the search space and schedule

evaluation has been proposed. The three-dimensional space

can be used for the analysis and control of the production

processes. We can identify the areas most relevant to perform-

ing production tasks of a certain data structure. By choosing

the appropriate control value we can pursue the production

process in accordance with the required trajectory describing

the process characteristics (such as time etc.). Many real-world

phenomena cannot be modeled by one single model but re-

quire a set of complementary models that together are able to

describe the whole process. In a multimodel, depending on

the state the process is in, one out of the sets of models will

be applicable and will describe the production process appro-

priately. Solutions of the scheduling problem will probably

be more perfect along with the development of such sciences

as data mining, pattern recognition, theory of modeling and

simulation, and many others.
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