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Abstract. In the paper the parallel compensator considered in [1] is applied to control of the plants with delay and compared with Smith

predictor. It is noted that Smith predictor removes only the delay, while the parallel compensator also changes the dynamics of the replacement

plant; the latter may be in some degree of freedom shaped by the designer. Owing to this the transients of the system with parallel compensator

are significantly faster. Accounting implementability, the control saturations are introduced in control algorithms. Additionally it is shown

that using parallel compensator we may apply a relay control to the plants with delay and nonminimum phase zeros, which is impossible

by using Smith predictor. Several results of simulations are described which confirm these observations.
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1. Introduction

The plants with pure time delay belong to the so called dif-

ficult plants, for which it is difficult to design a regulator

assuring some appropriate accuracy of the control. For these

plants an insignificant increase of the proportional regulator

gain causes instability and for small gain the closed loop sys-

tem has unsatisfactory accuracy in steady state. Also because

of the demand for stability of the closed loop system, the

integral part of the regulator must have a small gain. This

part removes the steady state error, but because of the small

gain the system is very slow. An exhaustive elaboration of the

problems related with the systems with delay one may find in

the monograph of Górecki [2].

For the plants with pure time delay Smith [3] proposed

a compensator which effectively takes the delay outside the

loop and allows a feedback design based on the plant dynam-

ics without delay. The result is that the regulator designed in

this manner is faster and assures higher accuracy (in compari-

son to the system in which the delay remains in the loop). Now

this compensator is commonly called Smith compensator [4]

(or predictor [5]).

The idea of the parallel compensator for the systems with

so called difficult plants (with delay, and/or nonminimum

phase and/or of higher order) was considered in [1], by the

author of the present paper. The parallel compensator con-

nected in parallel to the plant changes the dynamics of the

latter, so that the obtained replacement plant is easier for con-

trol.

Another approach to parallel compensator was presented

in [6] and in its references, where the plants with structured

uncertainty were considered. In comparison to [1] and the

present paper the considerations of [6] are significantly more

complicated, though they concern only minimum phase plants

and are not related with the present paper.

In the present paper the system with parallel compensator

considered in [1] is used for the systems with delay and com-

pared with the system with Smith predictor. It is noted that

the parallel compensator not only removes the delay from the

resulting replacement plant, but also changes the dynamics

of the latter, significantly. The Smith predictor removes only

the delay from the resulting replacement plant, but except this

the dynamics of the latter remains unchanged. The result is

that the system with parallel compensator may have signif-

icantly faster transients which has been confirmed by many

performed simulations.

It is noted that the parallel compensator applied for the

control of the plants with delay and nonminimum phase ze-

ros, gives possibility of applying a relay control; the resulting

system may be treated as modified sliding mode control. Relay

control may be interesting for some users because of simplic-

ity of the actuator. At the same time it is noted that Smith

predictor does not make it possible to implement the sliding

mode relay control for the plants with delay and nonminimum

phase zeros.

2. Parallel compensator

In this section the idea of the parallel compensator introduced

in [1] is reminded.

Consider the linear plant described by the transfer func-

tion (TF)

G(s) =
Y (s)

U(s)
=

L(s)

M(s)
e−sτ , (1)

where Y (s) and U(s) are the Laplace transforms of the plant

output and input, respectively, while L(s) and M(s) are poly-

nomials of m-th and n-th degree, respectively, m < n, τ is

the time of delay. Assume that the plant is stable, that is its

poles pi, i = 1, 2, ..., n have negative real parts i.e. Repi < 0.
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In the case of difficult plant (e.g nonminimum phase,

and/or with higher order dynamics, as well as with pure time

delay), when it is difficult to design the regulator assuring

an appropriate accuracy, the parallel compensator shown in

Fig. 1a may be applied. The parallel compensator is described

by the TF

Gc(s) =
Yc(s)

U(s)
= G1(s) − G(s), (2)

and its idea, as it was noted in [1] is similar to that of the

Smith predictor. Here Yc(s) is the Laplace transform of the

output yc of the compensator, while G1(s) is the TF which

will be appropriately chosen.

Fig. 1. The equivalent block diagrams of the system with parallel

compensator

Note that in the proposed structure shown in Fig. 1a the

TF of the replacement plant outlined by the dashed line is

described by

Y1(s)

U(s)
= G(s) + Gc(s)

= G(s) + G1(s) − G(s) = G1(s).

(3)

Of course, to implement a closed loop (CL) stable system

with the reference signal r determining the demanded output

y the TF G1(s) should fulfill some demands.

In the case of regulation when r = const the error in

a constant steady state is mainly interesting, therefore for some

constant steady state values it should be

yc = 0, y1 = y, e1 = r − y1 = r − y. (4)

The latter condition will be fulfilled if

G1(0) = G(0) = kp, (5)

where kp is the gain of the plant. In the case of tracking of the

varying reference signal r with the frequencies ω belonging

to some working frequency band

ω ∈ [0, ωmx], (6)

the demand (4) should be at least approximately fulfilled for

frequencies (6),

G1(jω) ≈ G(ω) for ω ∈ [0, ωmx]. (7)

The further considerations are limited to the case of reg-

ulation.

As it results from Fig. 1a, our considerations are also lim-

ited to the case when a proportional P regulator is used with

high gain k. The CL system with the replacement plant G1(s)
and high gain k should be stable and should have some ap-

propriate phase margin ∆ϕ1. It will be shown that the latter

demand may be fulfilled if the TF G1(s) has the relative de-

gree equal to one, and its parameters are appropriately chosen.

3. Approximate description of the CL system

The equivalent block diagram of the system from Fig. 1a is

shown in Fig. 1b. Note that the part of the system outlined by

the dashed line contains the elements of the regulator based

on the parallel compensator. Assuming that the system has

appropriate phase margin, under high gain k, the regulator in

the system is described by the following TF

C(s) =
U(s)

E(s)
=

k

1 + kGc(s)
≈ 1

Gc(s)
. (8)

Accounting (8) we obtain the following formula describ-

ing the CL system

Y (s)

R(s)
=

G(s)/Gc(s)

1 + G(s)/Gc(s)
=

G(s)

Gc(s) + G(s)
=

G(s)

G1(s)
. (9)

The formula (9) may be used for designing the TF G1(s).
This will be discribed in the next section.

4. Design of the replacement plant transfer

function

Denote by

G1(s) =
L1(s)

M1(s)
, (10)

a stable replacement plant TF (3) with minimum phase zeros.

Thus the polynomials L1(s) and M1(s) are Hurwitz polyno-

mials. One way of designing G1(s) is to choose

M1(s) = M(s), (11)

L1(s) = l(1 + sT )n−1, l = L(0), (12)

so the condition (5) is fulfilled.

Denote by ϕ1(ω) the phase of the frequency response

G1(jω) = L1(jω)/M(jω). Let the phase ϕ1(ω) fulfills the

inequality

ϕ < ϕ1(ω) ≤ 0, (13)

where ϕ = −180◦.

Since the TF G1(s) has the relative degree equal to one

then

limω→∞ϕ1(ω) = −90◦. (14)

Accounting (13) and the fact that G1(0) = kp one may

note that

∆arg
−∞<ω<∞

[1 + kG1(jω)] = 0, (15)

for any k > 0. The condition (15) determines the Nyquist sta-

bility criterion for the system shown in Fig. 1 [7]. Since the

criterion is fulfilled then the system is stable for any k > 0.

Additionally from (14) it results that for sufficiently large k
the phase margin ∆ϕ1 is close to 90◦, which results from

(14) and from definition of phase margin.
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Accounting (1), (10), (11) in (9) we obtain for the CL

system

Y (s)

R(s)
=

L(s)

L1(s)
e−sτ . (16)

From these considerations it results that in the consid-

ered case the choice of L1(s) influences the dynamics of the

researched CL system, essentially. Really, the characteristic

equation of the CL system is

L1(s) = 0, (17)

and its roots influence the velocity of decay of the transient

response. Therefore we try to choose L1(s) in the form (12)

containing the multiple root si = −1/T , i = 1, 2, ...n−1. Of

course, to obtain fast transient, we should choose a possibly

small time constant T , for which the condition (13) is fulfilled.

For the chosen T the condition (13) may be easy checked us-

ing MATLAB command nichols(.) (or nyquist(.)).

There arises the question when the choice of L1(s) in the

form (12) fulfilling (13) is possible. One may suppose that it is

possible if the dynamics of particular modes of denominator

M(s) of (1) is comparable (i.e. there are no modes with sig-

nificantly faster or significantly slower dynamics; significantly

means several or more times faster or slower).

If it impossible to find L1(s) in the form (12) fulfilling

(13) then we must seek it among other reasonable forms giv-

ing possibly fast transient. Some help in seeking is the obser-

vation that any mode of the type (1+sTi) or (1+α1s+α2s
2)

corresponding to real and complex conjugate roots, respec-

tively, appearing in denominator or numerator TF gives de-

crease of the phase ϕ1(ω) by −90◦ or −180◦ or increase by

90◦ or 180◦ when ω is varying from 0 to ∞, respectively.

Taking this into account the form of the possibly fast L1(s)
may be chosen for which condition (3) is fulfilled.

If for instance one mode of the denominator M(s) is sig-

nificantly slower then the remaining modes then L1(s) may

be created from the remaining faster modes of the denomi-

nator. The result is that the TF G1(s) takes then the form of

the first order lag containing in denominator the slowest not

cancelled mode (the faster modes of the denominator M(s)
and numerator L1(s) as stable, may be cancelled).

4.1. Example 1. Consider the plant described by the follow-

ing TF

G(s) = α
−0.5s + 1

s4 + 3.5s3 + 6s2 + 7s + 3
e−sτ . (18)

The TF G(s) has the following stable poles p1 =
−1.8185, p2 = −0.7343, p3 = −0.4736 + j1.4221, p4 =
−0.4736 − j1.4221 and the one nonminimum phase zero

z1 = 2, while α = 1 and τ = 1. The plant is of forth or-

der with delay and nonminimum phase.

To design the parallel compensator we choose the TF

G1(s) in the form determined by (10–12). Time constant T
has been chosen after several trials with using nichols(.)

MATLAB command. From these trials it results that for

T = 0.3 the minimal phase of G1(jω) is equal to −167◦

and the condition (13) is fulfilled with some margin. Account-

ing (12) with T = 0.3 we obtain

G1(s) =
0.027s3 + 0.27s2 + 0.9s + 1

s4 + 3.5s3 + 6s2 + 7s + 3
. (19)

The parallel compensator is determined by formula (2) to-

gether with (18) and (19). The gain k = 1000 has been chosen

to obtain 0.3% accuracy in steady state. Change of the value

of the gain from k = 300 to k = 3000 and more practically

do not change the results of simulations (except the steady

state error).

The results of simulations for reference value r = 1(t−1)
(1(t) = 0 for t < 0 and 1(t) = 1 for t > 0) are shown in

Fig. 2. The undershot equal to 0.25 appears in the time re-

sponse of y, which usually appears in nonminimum phase

systems. It is seen that the steady state value of the output

y is achieved for t1 ≈ 4.5 (with 1% accuracy) and the tran-

sient lasts approximately 4.5 units of time. At the same time

at t ≈ 1 and t ≈ 1.15 the peaks u ≈ 1000 and u ≈ −140
appear, respectively, in the control signal, which is the re-

sult of the high gain k of the regulator based on the parallel

compensator. Such a high values of the control signal may

be non-implementable in practice, therefore in the following

considerations the saturations of the control variable u are

introduced.

Fig. 2. a) The time response of the output y and b) of the control u

– for the system from Example 1

It is worthwhile to add that the system is robust. The in-

crease of the coefficient α to α = 1.5 without change of the

parallel compensator gives an output response y with accept-

able overshot. For α = 2 in the output response there appear

oscillations but the system remains stable. Decrease of α even
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to α = 0.25 increases only the settling time but the system

responses are acceptable.

5. Accounting saturation of the control

Since the approximate TF (8) of the regulator has high gain

k, the response of the regulator to a stepwise change of the

reference or output disturbance signals may contain high val-

ue peaks which in practice may be non-implementable. To

account limitations of the control signal the nonlinearity ac-

counting saturations has been introduced in the block dia-

grams in Fig. 3a and b.

Fig. 3. The equivalent block diagrams with accounting control satura-

tion and outlining a) the replacement plant, b) the resulting regulator

The nonlinearity accounting saturations is described by

the usual formulas

u =











umx for v ≥ umx

v for umin ≤ v ≤ umx

umin for v ≤ umin

(20)

where umx and umin denote the upper and lower saturation.

Note that the block diagram from Fig. 3a contains the

same replacement plant described by the TF (3) fulfilling

(13) and additionally contains the saturation block. To obtain

the equivalent block diagram shown in Fig. 3b the saturation

block must be introduced to the resulting outlined regulator

which in this case becomes nonlinear.

More convenient for analyzing stability is the block dia-

gram from Fig. 3a. To analyze the possibility of appearance of

stable oscillations (i.e stable limit cycle) the describing func-

tion analysis may be applied. Assume that umin = −umx i.e

the function (20) describing saturation is odd. Let N(A) is

the describing function for this saturation (A is the amplitude

of the sinusoidal input v) [8]. Then it is 0 < N(A) ≤ 1
for 0 < A < ∞ and the negative inverse −1/N(A) on the

Nyquist complex plain occupies the negative part of the real

axis lying to the left from the point [−1, j0] (j =
√
−1) and

the point [−1, j0]. Note that if the G1(jω) fulfills the con-

dition (13) then for any even very high value of k there is

no intersection of the frequency response kG1(jω) with the

locus −1/N(A), 0 < A < ∞. Thus in accordance with the

describing function analysis the system from Fig. 3a (and 3b)

should be stable. Therefore we may suppose that the existence

of saturation in the system may only decrease the speed of

returning to steady state and temporary high errors e. The

performed simulations confirm this observation.

Note, that if for some frequency ω∗ ϕ1(ω
∗) is close to

−180◦ (i.e. is close to the locus −1/N(A)), but fulfills the

condition (13), then in the system may exist the slowly decay-

ing oscillations with the frequency close to ω∗, which may

increase the time of returning to steady state. Therefore in

the case of introduction of the saturation (20) it may be save

to increase the lower border ϕ in the condition (13) (e.g. it

should be ϕ = −150◦).

5.1. Example 2. Now consider the system shown in Fig. 3

with the plant TF (18), parallel compensator TF (2) with (19)

and (18), gain k = 1000 and with introduced control satura-

tions determined by umin = −20 and umx = 20. The time

response of the CL system to the reference value r = 1(t−1)
is shown in Fig. 4. It is seen that though in the initial period of

time the control u is different from that shown in Fig. 2b, the

plot of y has been changed in-significantly (compare Figs. 4a

and 2a). Really it has somewhat smaller undershot equal to

0.2 but the time t1 is almost the same as for the system with-

out saturations considered in Example 1 (strictly speaking it

is in-significantly greater). Thus the appearance of the not

to small control saturations influences the time response in-

significantly. Even for smaller values of the saturations (e.g.

umin = −10 and umx = 10) the increase of t1 is insignif-

icant, but there appear some exactly shown deformations of

the transient.

Fig. 4. a) The time response of the output y and b) of the control u

– for system from Example 2

6. Applying of Smith predictor

Now, consider the system shown in Fig. 6, in which in the

place of parallel compensator it appears the Smith predictor

described by the TF [3]
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GS(s) =
L(s)

M(s)
(1 − e−sτ ), (21)

then the replacement plant TF takes the form

G1S(s) =
L(s)

M(s)
. (22)

Comparing the dynamics of the plant G(s) (1) and of the

replacement plant G1S(s) (22) we see, that in G1S(s) on-

ly the delay has been removed. Except this, the dynamics of

G(s) is the same as that of G1S(s). Thus if G(s), beyond

the delay contains also some nonminimum phase zeros, then

these zeros appear also in G1S(s) and the latter plant is also

difficult to control.

Another situation is when in the place of Smith predictor

the parallel compensator is applied, since then the replace-

ment plant dynamics G1(s) may be shaped by the designer.

To make a comparison with the results obtained in the Exam-

ples 1 and 2, in the next example for the plant G(s) (18) the

Smith predictor together with regulator PID will be applied.

6.1. Example 3. Now consider the classical PID regulator

described by the TF

C(s) = k1 +
k2

s
+ k3

s

1 + Tds
, (23)

which is applied to control of the plant (18) with Smith pre-

dictor, as shown in Fig. 5. After trials the parameters of the

regulator (23) have been tuned to the values k1 = 1.3728,

k2 = 1.0212, k3 = 0.3333, Td = 1/300. To obtain compara-

ble conditions of operation, the saturation of the control u on

the levels umin = −20 and umx = 20 has been introduced

in simulations. The time response of the system for the refer-

ence value r = 1(t− 1) is shown in Fig. 6. It is seen that the

obtained response is significantly slower than that shown in

Fig. 4a. The steady state of the output is now achieved (with

1% accuracy) for t1 ≈ 13.3 time units. Thus the period of

appearance of transients is now about three times longer than

for the system with parallel compensator.

Fig. 5. The system with Smith predictor and classical PID regulator

From many trials it results that it is impossible to ob-

tain a smaller time t1. It was also observed that the influence

of the assumed values of saturations on the time response is

negligible.

One may note that the undershot appearing in the sys-

tem with Smith predictor and PID regulator is significantly

smaller than that in the system with parallel compensator.

This is related with weaker reaction of the control in the sys-

tem with PID regulator. The system with parallel compensator

has a stronger reaction of the control in some initial period of

time, owing to this the period of transient is shorter, but the

undershot is higher.

Fig. 6. Step response of the system with Smith predictor and PID

regulator

7. Relay control for the plants with delay

In the case of the plants with delay Smith predictor takes the

delay outside the loop and owing to this makes it possible

to apply some relay control more effectively. One such pos-

sibility is applying sliding mode relay control. However this

is possible only then, when the replacement plant TF G1S(s)
has only minimum phase zeros, because it is the necessary

condition. Therefore, if the TF G(s) of the plant contains a de-

lay and some nonmimimum phase zeros, then after applying

Smith predictor, the replacement plant TF G1S(s) contains

nonmimimum phase zeros and it is impossible to apply the

sliding mode control [8].

Another situation is when we apply the parallel compen-

sator, creating the system which may be treated as the sys-

tem with modified sliding mode control. Consider the system

shown in Fig. 7a in which in the place of the P regulator with

the gain k it appears the relay with characteristic shown in

Fig. 7b. Assume that the hysteresis h of the relay is small and

the high frequency oscillations generated by fast switchings

of the relay are filtered by the dynamics of the plant G(s),
as well as by G1(s) and Gc(s). Let ȳ(t) and ȳc(t) be the

outputs of the plant G(s) and parallel compensator Gc(s),
respectively, in which the high frequency oscillations are ne-

glected. Since the amplitudes of these oscillations are small

then it is

ȳ(t) ≈ y(t), ȳc(t) ≈ yc(t). (24)

Fig. 7. a) System with parallel compensator and relay; b) character-

istic of the relay
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During fast switching the relay works on vertical segments

of its characteristic, therefore in an approximate description

the relay may be treated as the linear static element with very

high gain k (k → ∞ when h → 0).

Let u(t) be the control signal with filtered high frequency

oscillations, containing the slowly varying component such

that Y (s) = G(s)U (s), where Y (s) = L[y(t)] and U(s) =
L[u(t)] where L denotes Laplace transform. Let Y c(s) =
Gc(s)U(s) = L[yc(t)] and E(s) = R(s) − Y (s), R(s) =
L[r(t)], E1(s) = E(s) − Y c(s). During fast switching it is

|e1| ≤ h and if h → 0 we have e1 ≈ 0, E1(s) ≈ 0 and

E1(s) ≈ 0. Since E1(s) = E(s) − Gc(s)U(s) ≈ 0 then

C(s) =
U(s)

E(s)
≈ 1

Gc(s)
. (25)

The formula (25) describes the TF of the regulator out-

lined in Fig. 7a by the dashed line. The TF takes the same form

as the formula (8) valid for linear system shown in Fig. 1b.

Therefore for the CL system we have

Y (s)

R(s)
=

G(s)/Gc(s)

1 + G(s)/Gc(s)
=

G(s)

G1(s)
. (26)

Then the variables u(t), e(t), y(t) and r(t), in which the

high frequency oscillations are filtered, are related by the same

TF-s as in the linear continuous system from Fig 1a the vari-

ables u(t), e(t), y(t) and r(t) are (compare with formulas (8),

(9)). Thus the parallel compensator for relay implementation

may be designed in the same manner as previously (for con-

tinuous, linear implementation).

Strictly speaking the formulas (25), (26) are valid for the

system shown in Fig. 7a, if the relay generates fast switching

of the control u from u = −H to u = +H . In this case the

relay may be replaced by the linear amplifier with high gain

k. However from the characteristic of the relay it results that

the maximal and minimal values of the control u are deter-

mined by +H and −H , respectively. In the system shown in

Fig. 7a the relay sometimes gives the values of the control

equal to +H or −H , over some period of time without fast

switching. One may note that both the cases with and with-

out fast switching may be accounted by replacing the relay

in the system shown in Fig. 7a by the amplifier with high

gain k (if h → 0 then k → ∞) connected in series with the

element with saturations umx = H and umin = −H , as in

Fig. 3b. Both these systems (the first from Fig. 7a with h → 0
and the second from Fig 3b with k → ∞ and umx = +H ,

umin = −H) give the same time response of the output y to

the same reference value r.

7.1. Example 4. Consider a relay control for the plant G(s)
(18). Since the plant TF contains the delay and one nonmini-

mum phase zero then applying of Smith predictor is ineffec-

tive. Therefore we will apply the parallel compensator. Con-

sider the system with relay shown in Fig. 7a for which the

TF-s G(s) and Gc(s) are determined by (18) and (2) togeth-

er with (19) and (18), respectively. Assume the parameters

of the relay as H = 10, h = 0.01 and the reference value

r = 1(t− 1) This system will be called here the system with

relay.

Consider also the continuous system with saturation

shown in Fig. 3a, for which the TF-s G(s), and Gc(s) are

the same (determined by (18) and (2) together with (19) and

(18), respectively). Assume that the amplifier has the gain

k = 1000 and the saturation has parameters umx = H = 10,

umin = −H = −10. Assume the same reference value

r = 1(t − 1). This system will be called here the contin-

uous system with saturation.

The time responses of the output y, resulting from sim-

ulations are shown in Fig. 8. Solid line is used for the relay

system, while dotted line – for the continuous system with

saturation. It is seen that in accordance with above consider-

ations the responses of both the systems are almost the same.

For smaller h, say h = 0.005 they are visually not distin-

guishable at all. It is seen that smaller the absolute value of

saturation (now 10 – in the Example 2 it was 20) gives some

insignificant increase of the period of appearance of transients

and some deformation of the transient (as it was noted in Ex-

ample 2). By the way, for the system with relay for which

H = 20 and h = 0.01 the time response of the output y to

the reference r = 1(t − 1) is almost the same as that shown

in Fig. 4a.

Fig. 8. Step responses: of the relay system – solid line and of the

continuous system – dotted line

From these results it is seen, that using the relay control

(for which the actuator is usually simpler) we may obtain al-

most the same quality of control as in the continuous system

(in the relay system there appears the chattering effect which

sometimes is not accepted by users).
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