
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES

Vol. 56, No. 3, 2008

Invited paper

Robustness of iterative learning control

– algorithms with experimental benchmarking

E. ROGERS∗

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

Abstract. Iterative learning control is a technique especially developed for application to processes which are required to repeat the same

operation over a finite duration. The exact sequence of operation is that the task is completed, the process is reset and then the operation

is repeated. Applications are widespread among many industries, e.g. a gantry robot which is required to place items on a conveyor under

synchronization as part of a food manufacturing process. In effect, iterative learning control exploits the fact that once a single execution

of the task is complete then the input control action and output response produced are available to update the control input for the next

trial and thereby sequentially improve performance. Moreover, it may be possible to undertake the required computations during the time

between completing one trial and the start of the next. This paper gives an overview of some very significant recent progress in this general

area, including results from experimental benchmarking, and also some areas for on-going/future research are outlined.

1. Introduction

Iterative Learning Control (ILC) is concerned with the perfor-

mance of systems that operate in a repetitive manner where

the task is to follow some specified trajectory in a specified

finite time interval, also known as a pass or a trial in the liter-

ature, with high precision. The novel principle behind ILC is

to suitably use information from previous trials, often in com-

bination with appropriate current trial information, to select

the current trial input to sequentially improve performance

from trial-to-trial. In particular, the aim is to improve perfor-

mance from trial-to-trial in the sense that the tracking error

(the difference between the output on a trial and the specified

reference trajectory) is sequentially reduced.

The original work in this area is credited to [1] and since

then there have been substantial developments in both sys-

tems theoretic and applications terms. For an overview of

the algorithm development side see, for example, [2, 3] (the

second of these references has the added feature of a cate-

gorization of what is a very diverse area). Applications areas

include robotics, automated manufacturing plants and food

processing. For more details, including some those where

there is clear potential for significant added benefit from

fully developed ILC, one possible source is the survey ar-

ticle [4].

One fundamental systems theoretic problem in ILC is to

determine under what conditions will a scheme to converge

to zero tracking error. This is an aspect of the general subject

area which has seen much work for both linear and nonlinear

plant models, including the target of monotonic error con-

vergence (in the trial-to-trial direction). Zero tracking error

is, however, almost impossible to achieve due to random and

non-repeating disturbances. Moreover, there is often a trade-

off to be made between reduction of the trial-to-trial error and

the performance achieved along the trials. For example, it is

possible to converge trial-to-trial to a limit error which has

unacceptable along the trial dynamics, see, for example, [5].

In essence, ILC is a 2D (information propagation in two in-

dependent directions) system.

In general, current research and development in the iter-

ative learning community can, as in other areas, be broadly

partitioned into starting from either a linear or nonlinear mod-

el of the plant dynamics but here we restrict attention to the

former where there are still many open problems. This is es-

pecially true at the interface between theory and applications.

Given the diverse range of algorithms which have been de-

veloped over the years, there is a clear need to develop tools

and case studies which allow for valid comparison of com-

peting designs. In this paper, we focus on algorithms which

have been experimentally benchmarked using facilities espe-

cially designed and constructed for this purpose, including

some where a robust design is possible. Finally, some areas

of ongoing work/future research are briefly discussed. In the

next section we give the required background.

2. Background

Since the original work in the mid 1980’s [1], the general

area of ILC has been the subject of considerable research in

terms of the underlying theory (with experimental verification

in some cases). Commonly used ILC algorithms construct the

input to the plant or process from the input used on the last

trial plus an additive increment which is typically a function

of the measured output error on the current and/or a finite

number of previous trials, where on any trial the error is the

difference between the achieved and desired plant outputs. It is

∗e-mail: etar@ecs.soton.ac.uk

205

E. Rogers

simply not possible to give even a high level coverage of all

the approaches used, and the resulting algorithms, and hence

attention is initially restricted to the norm optimal approach

which has recently seen experimental verification. Compara-

tive results for two other popular classes of algorithms, and

also against a standard three term (or PID) controller, are giv-

en in the sections of this paper with deal with robustness.

Suppose that yk(t) and uk(t) denote the output and input

respectively of the plant on trial k which is of duration T, i.e.

0 ≤ t ≤ T < ∞, and has the same value on each trial. Sup-

pose also that rd(t) is the desired or reference trajectory. Then

ek(t) = rd(t)− yk(t) is the current trial error and the objec-

tive of constructing a sequence of input functions such that

the performance achieved is gradually improving with each

successive trial can be refined to a convergence condition on

the input and error, i.e.

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0

Here || · || is a signal norm in a suitably chosen function space

with a norm-based topology and u∞ is termed the learned

control.

The state-space model of the plant to be controlled by an

ILC scheme is assumed at this stage to be of the following

form

xk(t + 1) = Axk(t) + Buk(t), 0 ≤ t ≤ T

yk(t) = Cxk(t)
(1)

where on trial k, xk(t) is the n × 1 state vector, yk(t) is the

m×1 output vector, uk(t) is the r×1 vector of control inputs,

and the trial length T < ∞.
The mathematical definition of ILC used here has the fol-

lowing general form.

Definition 1. Consider a dynamic system with input u and

output y. Let Y and U be the output and input function spaces

respectively and let rd ∈ Y be a desired reference trajectory

for the system. An ILC algorithm is successful if, and only

if, it constructs a sequence of control inputs {uk}k≥0 which,

when applied to the system (under identical experimental con-

ditions), produces an output sequence {yk}k≥0 with the fol-

lowing properties of convergent learning

lim
k→∞

yk = rd, lim
k→∞

uk = u∞

Here convergence is interpreted in terms of the topologies

assumed in Y and U respectively.

The dynamics of processes described by (1) can be rep-

resented in operator form as

y = Gu + z0

where G : U → Y is the system input/output operator (as-

sumed to be bounded) and z0 represents the effects of system

initial conditions. If rd ∈ Y is the reference trajectory, or

desired output, then the tracking error is defined as

e = rd − y = rd − Gu − z0 = (rd − z0) − Gu.

Hence without loss of generality, it is possible to replace rd

by rd − z0 and consequently assume that z0 = 0.

It is clear that an ILC algorithm, if convergent, solves the

problem rd = Gu∞ for u∞. If G is invertible, then the for-

mal solution is just u∞ = G−1rd. A basic assumption of

the ILC paradigm is that direct inversion of G is not accept-

able since, for example, this would require exact knowledge

of the plant and involve derivatives of the reference trajec-

tory. This high-frequency gain characteristic would make the

approach sensitive to noise and other disturbances. Also in-

version of the whole plant G is unnecessary as the solution

only requires finding the pre-image of the reference trajectory

rd under G.
The problem can easily be seen to be equivalent to finding

the minimizing input u∞ for the optimization problem

min
u

{‖e‖2 : e = rd − y, y = Gu}

where || · || denotes any appropriate norm on Y. The improved

approach considered here results in an algorithm with the fol-

lowing two important properties: (a) automatic choice of step

size, and (b) potential for improved robustness through the

use of causal feedback of current trial data and feedforward

of data from previous trials.

More precisely, the algorithm here, on completion of trial

k, calculates the control input on trial k + 1 as the solution

of the minimum norm optimization problem

uk+1 = arg min
uk+1

{Jk+1(uk+1) :

ek+1 = rd − yk+1, yk+1 = Guk+1}

where the performance index, or optimality criterion, used is

defined to be

Jk+1(uk+1) = ‖ek+1‖
2
Y + ‖uk+1 − uk‖

2
U .

The initial control u0 ∈ U can be arbitrary in theory but,

in practice, will be a good first guess at the solution of the

problem.

This problem can be interpreted as the determination of

the control input on trial k + 1 with the properties that: (i)

the tracking error is reduced in an optimal way; and (ii) this

new control input does not deviate too much from the control

input used on trial k.

The benefits of this approach are immediate from the sim-

ple interlacing result

‖ek+1‖
2 ≤ Jk+1(uk+1) ≤ ‖ek‖

2, ∀k ≥ 0 (2)

which follows from optimality and the fact that the (non-

optimal) choice of uk+1 = uk would lead to the relation

Jk+1(uk) = ‖ek‖
2. The result states that the algorithm is of

the descent class as the norm of the error is monotonical-

ly non-increasing in k. Also, equality holds if, and only if,

uk+1 = uk, i.e. when the algorithm has converged and no

more input-updating takes place. There is an implicit choice

of step size here which means that, unlike the steepest descent

methods, this parameter does not have to be selected by the

user.

In this work, we consider the following cost function for

processes described by (1) which is clearly a special case of

the general form given above.

206 Bull. Pol. Ac.: Tech. 56(3) 2008

Robustness of iterative learning control – algorithms with experimental benchmarking

Jk+1(uk+1) =
1

2

N
∑

t=0

{

eT
k+1(t)Qek+1(t) + HT RH

}

H ≡ H(u, k) = uk+1(t) − uk(t)

(3)

where the weighting matrices Q and R are of compatible

dimensions, and symmetric positive semi definite and posi-

tive definite respectively. This is the linear model ILC version

of the familiar linear quadratic performance criterion from

optimal control theory which is, in effect, a combination of

the optimal tracking (of rd(t)) and the disturbance accommo-

dation problem (regarding uk(t) as a known disturbance on

trial k + 1).

Following [6], the solution of the optimal ILC control

problem for processes described by (1) with cost function (3)

is as follows:

• Matrix gain (Riccati) equation

K(t) = AT K(t + 1)A + CT Q(t + 1)C

−[AT K(t + 1)B ×
{

BT K(t + 1)B + R(t + 1)
}−1

×BT K(t + 1)A]

(4)

where K(t) is a matrix gain which has the terminal condition

K(N) = 0.

• Predictive component equation

ξk+1(t) =
{

I + K(t)BR−1(t)BT
}−1

{

AT ξk+1(t + 1) + CT Q(t + 1)ek(t + 1)
}

(5)

where ξk+1(N) = 0.

• Input update equation

uk+1(t) = uk(t) −
[{

BT K(t)B + R(t)
}−1

BT K(t)

×A {xk+1(t) − xk(t)}
]

+ R−1(t)BT ξk+1(t)
(6)

3. Measuring ILC performance

In norm-optimal ILC the weighting matrices Q and R can

be used to adjust the balance between convergence speed and

robustness respectively. A critical task therefore is to inves-

tigate just how much the choice of the entries in Q and R
affect algorithm performance (in many optimal control appli-

cations these are chosen to be diagonal matrices). Therefore

it is first necessary to discuss exactly what ILC performance

is and how to measure it.

Note: In this work we only consider diagonal Q and R and, in

particular, the case when Q = qI and R = rI , where q ≥ 0
and r > 0 are real scalars and I is the identity matrix with

compatible dimensions in each case.

It is generally recognized that there are three variables

which are of particular importance when describing the per-

formance of an ILC algorithm [7]. These are as follows.

• Convergence speed.

• Minimum tracking error.

• Long-term stability.

Although the instantaneous data recorded during each trial

is useful for analyzing the learning process and its stability, it

is clearly necessary to calculate some general measure of the

tracking accuracy for each trial, and observe how these change

as the trials progress. This can specifically indicate minimum

error, time to reach minimum error (convergence speed) and

any sign of instability. Popular measures of tracking accuracy

are the error norm or the mean-squared-error (mse).

Figure 1 shows the typical mse plot for an unstable ILC

system, where key parameters used to describe performance

are also indicated. In particular, e1 is the initial mse value,

ime is the number of trials required to reach minimum error,

emin is the minimum mse value and iu is the number of trials

before the mse begins to increase and effectively the system

becomes unstable. A typical mse plot for a stable system is

similar, except that the iu point is never reached and the mse

does not increase as the trials progress. Of these parameters,

ime and emin are most commonly used to describe ILC per-

formance.

Fig. 1. Typical mse curve for an unstable ILC system

The performance index here simply involves calculating

the area under the mse curve for the first N trials, where

N is selected appropriately for the system being considered.

This results in the performance index for N trials, PIN . It has

been suggested in the literatue that most ILC systems exhibit

learning behavior during the first 100 trials. Within this time,

the majority of the learning has been achieved and the system

has reached, or is near, the minimum tracking error value.

Therefore it is appropriate to compare the performance of al-

gorithms during this period. Consequently the experimental

results considered here will be compared using PI100.

PIN is simple to calculate. In particular, divide the area

beneath the mse plot into rectangular columns, rather than

trapezoids. Then if the width of each trial column is taken as

unity, this makes the PI100 a simple summation of the first

100 mse values. For the general case PIN , this is formally

defined as:

Bull. Pol. Ac.: Tech. 56(3) 2008 207

E. Rogers

PIN =

N
∑

k=1

e2
k. (7)

These are as follows.

To allow a fair comparison of algorithm performance, sev-

eral test parameters must be held constant:

• The plant (or plant model in simulation).

• The reference trajectory.

• The value of N .

• The mse value for the first trial (e1).

Variation in any of these parameters will affect PIN in

a way which does not correspond directly to a change in per-

formance. In which respect, a difficulty many arise with e1

but note that it can definitely be satisfied if the plant input is

set to zero for the duration of the first trial. The plant output

should therefore remain constant, and the value of e1 will be

the mse of the reference trajectory. If e1 held constant, it is

logical to remove the PIN dependency on the unit of mse,

by normalizing the mse so that e1 = 1.

It is now possible to define upper and lower bounds on

the value of PIN by considering two extreme cases of track-

ing performance. Firstly, suppose that the algorithm achieves

perfect tracking after only one trial. As specified previously,

the mse for the first trial is normalized to 1, but by the second

the mse will be 0. Irrespective of the value of N , the mse will

remain equal to 0 for all N > 1. Therefore the sum of the

mses will result in PIN (min) = 1 which defines the lower

bound. Now consider the opposite case when the algorithm

learns nothing for any trial. In this case the mse will be equal

to 1 for each trial and therefore the upper bound can be de-

fined as PIN (max) = N . If the algorithm becomes unstable

and the calculated PIN is larger than N , then it is set to N by

default. The PIN value will therefore lie between the bounds

1 ≤ PIN ≤ N . The closer the value of PIN is to 1, the

better the tracking performance.

4. Gantry robot test facility

The gantry robot (Fig. 2) is a commercially available system

found in several industrial applications. The robot is located

above one end of a plastic chain conveyor, and is tasked with

collecting payloads from a dispenser and placing them onto

the moving conveyor beneath. This is a fairly involved task,

as the robot must synchronize both speed and position with

the conveyor to achieve accurate placement of the payload.

The gantry robot can be treated as three separate single-input

single-output (SISO) systems (one for each axis) which can

operate simultaneously to locate the end effector anywhere

within a cuboid work envelope. The lowest axis – X moves

in the horizontal plane, parallel to the conveyor beneath. The

Y -axis is mounted on the X-axis and moves in the horizontal

plane, but perpendicular to the conveyor. The Z-axis is the

shorter vertical axis mounted on the Y -axis. The X and Y -

axes consist of linear brushless dc motors, while the Z-axis

is a linear ball-screw stage powered by a rotary brushless dc

motor. All motors are energized by performance matched dc

amplifiers. Axis position is measured by means of linear or

rotary optical incremental encoders as appropriate. In this pa-

per, the conveyor beneath the gantry robot is not considered.

To implement ILC, is it necessary to obtain a model for

the plant which is to be controlled. Each axis of the gantry was

modelled independently by means of sinusoidal frequency re-

sponse tests. From this data it was possible to construct Bode

plots for each axis and hence approximate transfer-functions

determined. These were then refined by means of a least mean

square optimization technique, to minimize the difference be-

tween the frequency response of the real plant and that of the

model. The resulting Bode plots comparing the plant and the

model are given in Fig. 3 for the X-axis only with the others

in [8]. Using the Bode asymptotic gain plot it is now a routine

task to construct an approximate transfer function for the dy-

namics and hence a minimal state-space model. The transfer-

function used in this work is 7th order. (See also [9] which

describes a reformulation of the algorithm to give an efficient

implementation in terms of the computational load etc.)

Fig. 2. The gantry robot

Fig. 3. X-axis Bode plot

5. Test parameters

With all axes operating simultaneously, the reference trajec-

tories for the axes produce a three dimensional synchroniz-

208 Bull. Pol. Ac.: Tech. 56(3) 2008

Robustness of iterative learning control – algorithms with experimental benchmarking

ing ‘pick and place’ action (Fig. 4). The trajectories produce

a work rate of 30 units per minute which is equivalent to

a trial duration of 2 seconds. Using a sampling frequency of

1 kHz, this generates 2000 samples per trial.

Fig. 4. Three dimensional reference trajectory

All tests were performed in ILC format (this experimental

facility can also be configured [8, 9] to operate in a Repetitive

Control (RC) mode and therefore also provides a basis for es-

tablishing the links between, and the relative performance of,

both classes of algorithms) and hence the following hold.

• There is a stoppage time between trial.

• The plant is reset to known initial states before the start of

the next trial.

• Calculation of the next ILC plant input occurs between the

end of one trial and the start of the next.

A two second stoppage time exists between each trial,

during which the next input to the plant is calculated. The

stoppage time also allows vibrations induced on the previous

trial to die away and prevents vibrations from being propa-

gated between trials. Before each trial begins, the axes are

homed to within ±30 microns of a known starting location to

minimize the effects of initial state error.

The plant input signal (voltage) for the first trial is zero.

Therefore the algorithm must learn to track the reference in

its entirety. There is no assistance from any other form of

controller. In the practical implementation, the system states

are estimated by means of a tuned full-state observer.

6. NOILC – experimental results

An extensive programme of experiments was undertaken and

the results given in this section are from [9]. These con-

firm the excellent performance in terms of convergence speed,

minimum error and long term performance (number of trials

which can be completed without (visible) degradation in per-

formance), also termed long term stability in the literature and

adopted here from this point onwards.

As representative results from the experiments performed,

Fig. 5 shows the mse calculated for each axis during a 5000
trial test designed to investigate the long-term stability. The

most important feature here is that there is no indication of

an increasing mse which typically indicates that the algorithm

is diverging away from the minimum error value and is un-

stable. The lack of increasing mse strongly suggests that the

algorithm is stable. It is important to note, however, that the

5000 trial test does not guarantee infinite trial performance.

However, it is a good indicator that the algorithm can achieve

long-term performance compared to other algorithms imple-

mented on the same plant which became unstable within 100
or in severe cases just 3 trials.

Fig. 5. Implementation – mse 5000 trials

As noted previously, the results here are for diagonal

choices of the cost function weighting matrices Q and R
with common diagonal entries q ≥ 0 and r > 0. To inves-

tigate the effect of varying q and r, a batch of tests was

performed using different combinations of these parameters.

Table 1 displays the values of q and q which were used to

produce a total of 56 combinations. Each combination was

implemented for 100 trials and the PI100 performance index

described in Section 3 was calculated. Given that there are

two tuning parameters, it is particularly suitable to plot the

algorithm performance on a three dimensional surface chart.

Figure 6 displays the performance plot for the X axis. The

other two axes performance plots are very similar, particularly

the Y axis where the low frequency gain of the linear motor

is practically identical to that of the X axis.

Noting that q affects the rate of error reduction and r
limits the input change, interpreting the plots becomes a

simple task. To the right of the chart is a region of poor

tracking performance where the PI100 value is near to or

equal to 100 indicating that virtually nothing is learnt during

the 100 trial test. As could be expected, this corresponds

to a small value for q and a large value for r. With these

settings, the algorithm is far too conservative. As the ratio of

q to r increases, gradually PI100 reduces, indicating that the

performance is improving. This is represented by the slope to

Bull. Pol. Ac.: Tech. 56(3) 2008 209

E. Rogers

the right side of the chart. As the q/r ratio continues to in-

crease, PI100 is reduced to values very close to 1, indicating

that the perfect trajectory is learnt in almost one trial. The

balance of error reduction to input change is now approaching

optimality. Temporarily increasing q/r has little effect on the

performance, until the system becomes unstable and PI100

jumps back to 100. This is represented by the channel and

then the steep slope to the left of the chart. It is important to

note that the ratio of q to r is what determines the algorithm

performance rather than the actual values for each parameter.

If a larger range of q and r values were used, the chart would

still have a channel cutting diagonally across it.

Table 1

q and r values used in experiments

q r

0.1 0.0001

1 0.001

10 0.01

100 0.1

1000 1

10000 10

100000 100

Fig. 6. X-axis PI100 for various q and r

Note 1. In this we have assumed that the weighting on each

state is the same motivated by the fact that the low frequency

responses (Fig. 3 for the X-axis) of the three axes are similar.

Non-equal weighting can be examined in the same way.

7. Robust ILC analysis

In this section we address, using results from [10], the rela-

tively open area of robust ILC starting form an assumed plant

model in the form (after sampling if required) of the follow-

ing standard linear, time-invariant single input, single output

state-space representation defined over the finite time interval,

0 ≤ t ≤ T (for ease of notation explicit reference to sampling

interval is not given)

x(t + 1) = Φx(t) + Γu(t); x(0) = xo

y(t) = Cx(t)
(8)

where the state x(·) ∈ R
n, output y(·) ∈ R, input u(·) ∈ R,

and Φ,Γ and C are matrices of appropriate dimensions. With-

out loss of generality, it will be assumed that CΓ > 0 and

that the system (8) is controllable and observable.

Given that the system (8) is defined over a finite time-

interval, it can be equivalently described by the matrix equa-

tion ỹk = G̃eũk, with

G̃e =

0 0 0 . . . 0

CΓ 0 0 . . . 0

CΦΓ CΓ 0 . . . 0
...

...
...

. . .
...

CΦT−1Γ CΦT−2Γ CΦT−3Γ . . . 0

(9)

where ũk = [uk(0) uk(1) . . . uk(T − 1)]T , ỹk =
[yk(1) yk(2) . . . yk(T)]T and the elements CΦjΓ of the ma-

trix Ge are the Markov parameters of the plant (8). Suppose

also that reference signal r(t) satisfies r(0) = Cxo. Then for

analysis it is sufficient to analyze the ”lifted” plant descrip-

tion yk = Geuk where uk = [uk(0) uk(1) . . . uk(T − 1)]T ,

yk = [yk(1) yk(2) . . . yk(T)]T and

Ge =

CΓ 0 0 . . . 0

CΦΓ CΓ 0 . . . 0

CΦ2Γ CΦΓ CΓ . . . 0
...

...
...

. . .
...

CΦT−1Γ CΦT−2Γ CΦT−3Γ . . . CΓ

.

(10)

One class of ILC algorithms which has been extensively

studied is those based on the steepest descent principle and

hence on minimizing a cost function. Here we first consider

the following version (see, for example, [11]) where the cost

function to minimized for each trial is given by

J(uk+1) = ‖ek+1‖
2, ek+1 = r − Geuk+1. (11)

Assume now that the control input on trial k + 1 is taken

as uk+1 = uk + ǫδk+1, where ǫk+1 is a scaling factor and

δk+1 determines the direction of the update (vector). Then

J(uk+1) = J(uk + ǫk+1δk+1)

= ‖ek+1‖
2 =

‖ek‖
2 − 2ǫk+1δ

T
k+1G

T ek + ǫ2k+1δ
T
k+1G

T
e Geδk+1

(12)

and hence

‖ek+1‖
2−‖ek‖

2 = −2ǫk+1δ
T
k+1G

T
e ek+ǫ2k+1δ

T
k+1G

T
e Geδk+1.

(13)

Consequently to achieve monotonic error convergence, the

right-hand side in (13) must be negative. One way to achieve

this is to set δk+1 = GT
e ek, resulting in the control law

uk+1 = uk + ǫk+1G
T
e ek (14)

and then

‖ek+1‖
2 − ‖ek‖

2 = −2ǫk+1‖G
T
e ek‖

2 + ǫ2k+1‖GeG
T
e ek‖

2.
(15)

210 Bull. Pol. Ac.: Tech. 56(3) 2008

Robustness of iterative learning control – algorithms with experimental benchmarking

The negative term −ǫk+1‖G
T
e ek‖

2 is of o(ǫ) and the posi-

tive term ǫ2k+1
‖GeG

T
e ek‖

2 is of o(ǫ2). Hence, by using a suf-

ficiently small positive ǫk+1, the right-hand side of (15) can

be made negative (note that Ge is invertible by the assump-

tion that CΓ > 0), resulting in monotonic convergence. In

order to automate the selection process for ǫk+1, it was pro-

posed in [11] that ǫk+1 be determined as the solution of the

optimization problem

ǫ∗k+1 = arg min
ǫk+1∈R

J(uk + ǫGT
e ek). (16)

Hence if ǫ∗k+1
denotes the optimal value then it is routine

to show that

ǫ∗k+1 =
‖GT

e ek‖
2

‖GeGT
e ek‖2

. (17)

Then

‖ek+1‖
2 − ‖ek‖

2 = −
‖GT

e ek‖
4

‖GeGT
e ek‖2

(18)

where the right-hand side is obviously negative, implying

monotonic convergence to zero tracking error.

The problem of what is meant by “robustness” of an ILC

control scheme is more involved than in the 1D case. For ex-

ample, there is robustness to unmodelled dynamics and also

to the effects of the process not resetting to the same val-

ue before the start of each new trial (this is usually known

as robustness to initial conditions). In this section we give

new results on robustness to unmodelled dynamics for the

a steepest-descent ILC law discussed above and give results

from implementation on the gantry robot facility.

Robust control analysis is based on an assumed model

for the uncertainty where here a multiplicative approach is

used which is modelled by the equation Ge = GoU . Here

Go is the nominal model (i.e. an estimate of the true plant),

and U reflects the multiplicative uncertainty (i.e. modelling

errors), and also Go is used instead of Ge in the update law,

i.e. uk+1 = uk + ǫk+1G
T
o ek. The same cost function as the

steepest descent algorithm is considered.

Routine modification of (15) now gives the following re-

sult.

Lemma 1. Suppose that U + UT is a positive-definite ma-

trix. Then if ‖ek‖ 6= 0 there exists an ǫk+1 > 0 such that

‖ek+1‖
2 − ‖ek‖

2 < 0.

In the steepest-descent algorithm, ǫk+1 is given by

ǫk+1 =
‖GT

o ek‖
2

‖GoGT
o ek‖2

(19)

and hence there is no clear mechanism to modify this parame-

ter to satisfy Lemma 1. Consequently we now develop a new

modified steepest-descent version that will result in monoton-

ic convergence for plants with multiplicative uncertainty U ,

where U + UT is assumed to be a positive-definite matrix.

The exact form is

uk+1 = uk + ǫk+1G
T
e ek (20)

where ǫk+1 is selected to be the solution of the optimization

problem

min
ǫk+1∈R

J(ǫk+1), J(ǫk+1) := ‖ek+1‖
2 + wǫ2k+1 (21)

and w ∈ R, w > 0.

The cost function J(ǫk+1) here addresses two design ob-

jectives. In particular, the first term aims to keep the tracking

error small during each trial and the second aims to keep

the magnitude of ǫk+1 small. If successful this will lead to

a cautious and robust algorithm in comparison to the basic

steepest-descent algorithm. The solution of the optimization

problem (21) is (by routine analysis)

ǫk+1 =
‖GT

e ek‖
2

w + ‖GeGT
e ek‖2

(22)

and the following result gives its convergence properties.

Lemma 2. If w ∈ R, w > 0 then ‖ek+1‖ ≤ ‖ek‖, where

equality holds if, and only if, ǫk+1 = 0. Also

lim
k→∞

‖ek‖ = 0 and lim
k→∞

ǫk = 0 (23)

which establishes monotonic convergence to zero tracking er-

ror.

Now focus on the implications of replacing Ge by the

assumed uncertainty model, i.e. Ge = GoU. Then using the

optimal ǫk+1 we have that monotonic convergence requires

‖ek+1‖
2−‖ek‖

2 < 0 for a non-zero ek. The next result shows

how this can be achieved by taking w to be a sufficiently large

positive number.

Lemma 3. Assume that U+UT is symmetric positive-definite

and w is chosen such that

w >
1

2

‖GT
o ‖

2‖GeG
T
o ‖

2‖e0‖
2

σmin

(

Go

(U + UT)

2
GT

o

) (24)

where σmin

(

Go

(

U + UT

2

)

GT
o

)

denotes the small-

est eigenvalue of the symmetric positive-definite matrix

Go

(

U + UT

2

)

GT
o . In this case, the sequence of tracking

errors satisfies ‖ek+1‖ < ‖ek‖ when ek 6= 0.

Note 2. Note that the estimate for w can be very conserva-

tive, because the term eT
k Go

(

U + UT

2

)

GT
o ek is estimated

in terms of the smallest eigenvalue of Go

(

U + UT

2

)

GT
o .

Furthermore, if w is selected to be excessively large in mag-

nitude, this can have a undesirable effect on the convergence

speed, because a large w will result in a small ǫk+1, implying

that uk+1 ≈ uk in such a case. Consequently this proposition

should be understood as an existence result, and in practice

w can be selected by resorting to a trial and improvement

approach.

Note 3. Clearly the sufficient value of w decreases as ‖ek‖
2

decreases. This provides a means to reduce w with each suc-

cessive trial k where such a w could result in an increase in

Bull. Pol. Ac.: Tech. 56(3) 2008 211

E. Rogers

the convergence speed. A natural choice to exploit this would

be w = w1‖ek‖
2, but, as ‖ek‖

2 approaches zero dangerously

high inputs could be applied to the plant. A simple remedy is

to choose w = w0 + w1‖ek‖
2.

The next result shows that in addition to monotonic con-

vergence, UT +U > 0 also implies that limk→∞ ek = 0 if w
is selected to be sufficiently large.

Lemma 4. Under the assumptions of Lemma 3 the algorithm

converges monotonically to zero tracking error.

Note 4. So far it has been established that for monotonic

convergence to zero tracking error it is required that the mul-

tiplicative uncertainty U has to be positive in the sense that

UT +U is a positive-definite matrix. However, in most appli-

cations the nominal ‘matrix’ model Go is obtained by truncat-

ing the ‘lifted’ transfer function zGo(z), where Go(z) is the

transfer function of the nominal plant model when the time-

axis is infinite. Hence it is essential to express this property in

terms of these transfer-function models. In which context, note

that using the transfer-function descriptions of the plant, the

uncertainty model becomes zG(z) = U(z)Go(z), or U(z) =
G(z)−1Go(z). Also, it can be shown that if U(z) is a positive-

real system (or equivalently, its Nyquist diagram lies strictly

in the right-half plane, see [12]), the truncated system (ma-

trix) U is positive, i.e. UT + U is a positive-definite matrix,

see [13]. The Nyquist diagram condition is equivalent to the

condition that the phase of the uncertainty model U(z) has to

lie inside ±90o, demonstrating a good degree of robustness.

In summary, the modified steepest-descent algorithm will

converge monotonically to zero tracking error if the mul-

tiplicative uncertainty U satisfies the positivity condition

UT + U and w is chosen to be sufficiently large. Note that in

the standard algorithm w = 0. Therefore the introduction of w
has resulted in a straightforward mechanism to find a balance

between convergence speed and robustness.

8. Further experimental results

The size of the Go matrices is determined by the sampling

frequency and the time period of one trial. For the robust

optimal algorithm, the selected sampling frequency is low at

only 100 Hz and this has several advantages. A low sample

frequency minimizes the sizes of the Go matrices implying

that less memory and computation time are required to gen-

erate the next input to the plant. Using a low sample frequen-

cy also acts as a simple low-pass filter by aliasing out high

frequency noise. This is useful for achieving good long term

performance in ILC systems [14] (see also the results section).

The gantry robot axes are positioned using a velocity control

mode where the linear motor amplifiers operate with their

own closed-loop control. The input to the amplifiers is there-

fore simply a setpoint adjustment and is not directly required

to achieve a stable system. Therefore the chosen frequency of

100 Hz is sufficient to accurately control the plant.

As a first set of experiments, the performance of the mod-

ified steepest descent algorithm developed in Section 7 has

been compared against two other algorithms in the absence

of any uncertainty in the plant model, i.e. Ge = Go. The rea-

son for this is to establish that this new algorithm is capable of

providing improved performance and the results can be used

to assess robustness issues using the modified robust optimal

algorithm. The two other algorithms used in this set of ex-

periments are a standard three term (PID) feedback controller

(acting on the current trial error alone with Kp, Ki and Kd

denoting the proportional, integral and derivative gains re-

spectively) and a simple proportional, or P-type, anticipatory

ILC algorithm

uk+1(t) = uk(t) + αek(t + 1) (25)

where α is a scalar learning gain which is chosen by the op-

erator. The anticipatory component (the (t + 1) term) here

means that the error value of the update is shifted forward by

one sample instant. This aims to capture the trend of the error

data rather than treating each sampling instant individually.

Fig. 7. Comparison of PID, P-type ILC and robust optimal ILC

Figure 7 shows the mse data obtained for the three types

of controller over 500 trials, where the performance of the

PID controller obviously does not change as it has no ability

to learn. To allow fair comparison of the controllers, the first

trial of the P-type ILC and robust optimal ILC is controlled

by the PID controller. The PID controller is then switched

out and the ILC controller operates alone. This automatically

sets the mse for the first trial at a uniform value. For the data

shown, the value of α was set equal to 0.1 for all axes, and

the value of w was set to 0.

From the data it is immediately evident that both the P-

type and robust optimal controllers have the ability to improve

the tracking performance beyond that of the PID controller. It

is also clear that the performance of the robust optimal algo-

rithm is superior to that of the P-type, as the convergence rate

and level of error reduction are far greater. The performance

of the P-type algorithm also appears to be non-monotonic as

there is a tendency for the mse to grow first before reducing.

In an attempt to match the performance of the robust optimal

algorithm, the learning gain α of the P-type algorithm was set

212 Bull. Pol. Ac.: Tech. 56(3) 2008

Robustness of iterative learning control – algorithms with experimental benchmarking

at 0.01, 0.1 and 1 respectively. At 0.01, the learning rate was

very slow or unnoticeable. With α equal to one the learning

rate was much faster, but still did not match the robust opti-

mal controller. With this higher learning gain value the mse

also began steadily increasing again after approximately 95
trials. This was accompanied by a noticeable vibration of the

gantry structure which became increasingly violent. At 200
trials, the system was switched off to prevent damaging the

mechanical components.

The increase in mse and the mechanical vibration are clear

signs of instability. This is most likely caused by high fre-

quency noise which is amplified at each cycle of the trial

loop [14]. It is important to note that the P-type ILC is oper-

ated at a sampling frequency of 1 KHz, ten times faster than

the robust optimal algorithm. Hence it is possible for much

higher frequencies to be added to the control signal at each

trial. High frequency noise is not a repeatable disturbance and

so the ILC is unable to reduce it.

Having completed these experiments and demonstrated the

relative performance of the modified steepest decent algo-

rithm, it is now possible to investigate the properties of the

robust optimal algorithm.

To apply the robust optimal algorithm it is necessary to

determine Go and U (Ge = GoU) for the particular applica-

tion under consideration. Clearly there is a very wide range

of admissible Go and U and here we seek to demonstrate

the capabilities of this uncertainty structure by selecting these

parameters to closely resemble what choices may be made by

a practicing engineer. In particular, we consider in turn the

cases when (i) there is an error only in the zero frequency

gain of the transfer-function built from measured frequency

responses, (ii) a model is produced based only on the low

frequency characteristics, and (iii) the axis dynamics can be

represented by a pure integrator with a tunable gain.

In the case of (i) we can investigate the consequences of

this by constructing Go starting from the measured Bode plots

in the continuous domain and then investigating what happens

when the positive real scalar U is varied. For (ii), a standard

form of continuous-time model for a linear motor drive is

k/s(s + a) where k and a are positive scalars. In physical

terms, this amounts to assuming that there is no interaction

between the individual axes of the robot and all higher fre-

quency dynamics are ignored. The tuned models actually used

for the three axes are

Gox(s) :=
11

s(s + 200)
(26)

Goy(s) :=
17

s(s + 300)
(27)

Goz(s) :=
10

s(s + 400)
. (28)

Finally, in (iii) no account of the individual axis frequency

responses is taken when obtaining Go.

8.1. Model uncertainty – Case (i). Results for Case (i) with

w = 0 are shown in Fig. 8 where U is selected in the range

between 0.75 and 1.25. Also it follows immediately from (22)

that if U < 1 then this will result in an increase in the learning

gain and consequently performance will be severely degraded

because the algorithm will over compensate for the error at

each trial.

Fig. 8. mse for different scalar gains for Case (i)

As described in Note 3 one option to restore a high con-

vergence rate, while maintaining stability, is to allow the adap-

tation of the magnitude of w as a function of the current level

of tracking error, i.e. use

wk+1 = w0 + w1||e||
2 (29)

where w0 and w1 are two new tuning parameters, which must

be appropriately selected to match the operation of the control

system. Parameter w0 can be used to guarantee stability by

setting a baseline magnitude for wk+1, while w1||ek||
2 adapts

wk+1 to match the change in tracking error.

Considering the X-axis displacement profiles for trials

490–500 with U = 0.5 and wk+1 = 2 × 10−7||ek||
2 leads

to the conclusion that the adaptive variant of the gain tun-

ing parameter has clearly improved the convergence rate and

minimum tracking error. The relative performance is mea-

sured through the use of PI100. This reveals that the Z-axis

performance remains poor in comparison to the other axes.

However, this can be corrected by setting wk+1 = 0. The re-

quired Z-axis travel is sufficiently small and hence the initial

overshoot caused by the increased learning gain does not ex-

ceed axis travel limits. By trial 100, the output displacement

accurately follows the reference trajectory well.

8.2. Model uncertainty — Cases (ii) and (iii). For Case (ii),

the representative log mse results demonstrate that the robust-

ness structure assumed in this work can be used to design

a controller based on a reduced order model whose compar-

ative performance is very close to that achieved with a full

order model. As expected, the difference is most noticeable

for the X-axis where the performance of the low-order mod-

el is noticeably worse than that of the high order model.

The X-axis has the most significant high frequency dynamics

and so is most affected by the simplification process.

Bull. Pol. Ac.: Tech. 56(3) 2008 213

E. Rogers

The stability theory (see Note 4) allows Go to be con-

structed from a continuous-time model of the form β/s, where

β is the tunable gain, as in Case (iii). (This represents the ef-

fects of choosing any other continuous time transfer function

whose phase lies between 0 and −180◦.) Using this transfer

function for controller design, a range of values of β from

0.01 to 1.0 have been considered in detail to investigate the

effect of the model gain on stability and convergence. This

shows that with a large value for β the rate of learning is

slower. As β is reduced, the learning steadily becomes faster

until an optimum β is reached. Increasing β any further then

rapidly reduces the learning rate and very quickly the sys-

tem performance degrades. The best values of β for each axis

were found to be 0.05 for the X and Y -axes and 0.03 for the

Z-axis. In all three cases the zero frequency gain of the re-

sulting simplified model is a close match to that of the higher

order model

When β is too large, the controller will assume that a small

change in its effort will have a larger effect at the output. This

effectively reduces the convergence rate. If β is too small, then

the resulting controller assumes that large changes in con-

troller effort are required to effect the output. Consequently

there will be overcompensation for a given tracking error and

performance will be severely degraded. This suggests a very

simple tuning rule for the controller in this case.

1. Set β to a large value (if any form of plant model is avail-

able ensure that β generates a gain which is greater than

the gain of the model at low frequency).

2. Operate the system and ensure that stability is achieved.

3. Reduce β.

4. Continue steps 2 and 3 until optimal convergence is

achieved or until the system begins to severely degrade.

5. If this occurs, increase β slightly.

6. β is set.

To investigate the ±90◦ stability boundary, the plant mod-

el 1/s2 has been used to design and implement the control

law on each axis. This model generates a phase shift of −180◦

and at low frequency each axis of the plant has a phase shift of

−90◦. The system is therefore just on the theoretical stability

boundary. The gain of 1/s2 generates a conservative learning

system for each axis. The trajectory described by the X-axis

from trial 1 where the trajectory is zero to trial 201, in in-

tervals of 20 trials and the thicker line represents the desired

reference trajectory. By trial 121, the axis initially travels in

the opposite direction to what is required. This effect becomes

steadily worse and by trial 201, the rapid change of direction

at the start of the trial is severe. The test was in fact termi-

nated at 203 trials to prevent damaging the gantry robot. In

addition, there is a growing oscillatory component of the dis-

placement waveform which occurs at time 0.1 seconds. This

initially appears at trial 41 and is clearly visible at trial 201m

Small oscillations such as this can usually be seen in other

ILC systems as their performance begins to degrade. These

observations suggest that use of a 1/s2 model will produce

a poor controller as it introduces an additional phase shift of

−90◦ at low frequency when compared to the plant (see also

Note 4).

The results above have only considered the case when

w = 0 but the theory predicts that a non-zero w could in-

crease robustness of the controller. The approximate model

β/s with β selected too small is an example of such a situa-

tion and we now investigate this case in more detail.

9. Conclusions

This paper has reviewed some of the major developments in

the general subject area of iterative learning control. The em-

phasis has been on showing how advanced control algorithms

in this area can be designed to give high performance which

is then experimentally verified by experiments on a gantry

robot system. Moreover, the experimental testing of ILC al-

gorithms for robustness against unmodelled plant dynamics is

also possible.

It has, of course, only been possible to consider a small

fraction of the total subject area and for the case of linear

dynamics where there is still much work to be done. Also the

complete area of nonlinear ILC has to see a move forward

from just trial-to-trial error convergence proofs if the subject

area as a whole is to meet its true potential.

Acknowledgements. The results in this paper are from a re-

search programme iterative learning control with experimen-

tal benchmarking between The Universities of Southampton

and Sheffield in the UK and The University of Zielona Go-

ra, Poland. This work is directed in Southampton by the

author and Dr Paul L. Lewin, in Sheffield by Professor

David H. Owens, and in Zielona Gora by Professor Krzysztof

Galkowski. The work of the UK partners has been funded by

the Engineering and Physical Sciences Research Council.

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering oper-

ations of robots by learning”, J. Robotic Systems 1, 123–140

(1984).

[2] K.L. Moore, Iterative Learning Control for Deterministic Sys-

tems, Advances in Industrial Control Series, Springer Verlag,

London, 1993.

[3] H.-S. Ahn, Ch. YanQuan, and K.L. Moore, “Iterative leanring

control: brief survey and categorization”, IEEE Transactions

on Systems, Man and Cyberneitcs Part C 37(6), 1099-1121

(2007).

[4] A. Bristow, M. Tharayil, and A.A. Alleyne, “A survey of

iterative learning control”, IEEE Control Systems Magazine

26(3), 96–114 (2006).

[5] D.H. Owens, N. Amann, E. Rogers, and M. French, “Analysis

of iterative learning control schemes – a 2D systems/repetitive

processes approach”, Multidimensional Systems and Signal

Processing 11(1/2), 125–1777 (2000).

[6] N. Amann, D.H. Owens, and E. Rogers, “Predictive opti-

mal iterative learning control”, Int. J. Control 69(2), 203–226

(1998).

[7] J-X. Xu and Y. Tan, “Robust optimal design and convergence

properties analysis of iterative learning control approaches”,

Automatica 1867–1880 (2002).

214 Bull. Pol. Ac.: Tech. 56(3) 2008

Robustness of iterative learning control – algorithms with experimental benchmarking

[8] J.D. Ratcliffe, Iterative Learning Control Implemented on

a Multi-axis System, PhD Thesis, University of Southampton,

UK, 2005.

[9] J.D. Ratcliffe, P.L. Lewin, E. Rogers, J.J. Hatonen, and D.H.

Owens, “Norm-optimal iterative learning control applied to

a gantry robots for automation applications”, IEEE Transac-

tions on Robotics 22(6), 1303–1307 (2006).

[10] J.D. Ratcliffe, J.J. Hatonen, P.L. Lewin, E. Rogers, and

D.H. Owens, “Robustness analysis of an adjoint optimal it-

erative learning controller with experimental verification”,

Int. J. Robust and Nonlinear Control, 18(10), 1089–113

(2008).

[11] K. Furuta and M. Yamakita, “The design of learning control

systems for multivariable systems”, Proc. IEEE Int. Symposium

on Intelligent Control, 371–376 (1987).

[12] C.A. Desoer and M. Vidyasagar, Feedback Systems: Input Out-

put Properties, Academic Press, London, 1975.

[13] J.J. Hatonen and D.H. Owens, “New connections between pos-

itivity and parameter-optimal iterative learning control”, Proc.

IEEE International Symposium on Intelligent Control, 69–74

(2003).

[14] R.W. Longman, “Iterative learning control and repetitive con-

trol for engineering practice”, Int. J. Control 73(10), 930–954

(2000).

Bull. Pol. Ac.: Tech. 56(3) 2008 215

