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dictionary approach
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Abstract. The paper deals with a multiple fault diagnosis of DC transistor circuits with limited accessible terminals for measurements. An

algorithm for identifying faulty elements and evaluating their parameters is proposed. The method belongs to the category of simulation

before test methods. The dictionary is generated on the basis of the families of characteristics expressing voltages at test nodes in terms

of circuit parameters. To build the fault dictionary the n-dimensional surfaces are approximated by means of section-wise piecewise-linear

functions (SPLF). The faulty parameters are identified using the patterns stored in the fault dictionary, the measured voltages at the test nodes

and simple computations. The approach is described in detail for a double and triple fault diagnosis. Two numerical examples illustrate the

proposed method.
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1. Introduction

The fault diagnosis of analog circuits, especially nonlinear, is

an important and still open problem. During the last decades

many methods were made to detect different types of faults

(soft/hard, single/multiple), in different types of circuits and

with a different access to their interior [1–10] have been de-

veloped. If circuit simulations take place before the testing

process, the diagnosis method is classified as the simulation-

before-test (SBT) approach. Methods based on a fault dictio-

nary belong to this group. When having measurements at ac-

cessible test points and comparing them with the information

stored in the dictionary the faulty elements can be identified

and their parameters can be evaluated. The crucial point of

the approach is building a fault dictionary. The fundamental

works in this area refer to a location of a single catastrophic

fault in DC circuits. The large computing power is needed

to build the fault dictionary for the multiple hard fault diag-

nosis. Using the neural network or the fuzzy logic concept

enables us to locate parametric faults. In paper [7] a method

belonging to SBT category was developed and a original pro-

cedure for building a fault dictionary was presented. A key

point of the procedure is tracing characteristics which express

voltages at the test nodes in terms of resistances considered as

possibly faulty using a SPICE-oriented approach. To generate

the fault dictionary the characteristics are approximated using

piecewise-linear functions. On post test-stage it is required

to execute certain calculations to locate faulty elements and

estimate their values.

The proposed method, belongs also to the SBT group of

methods and it allows the detection of multiple soft faults

in nonlinear DC circuits. To build the fault dictionary the n-

dimensional surfaces are approximated by means of section-

wise piecewise-linear functions (SPLF) [11]. The approach is

described in detail for the double and triple fault diagnosis.

The proposed method has been implemented and tested using

several electronic circuits with limited accessible terminals for

measurement.

2. Section-wise piecewise-linear representation

of n-dimensional surfaces

In [11] a closed form analytical formula for represent-

ing n-dimensional surfaces and scalar functions of n vari-

ables f(x1, x2, · · · , xn) was presented. The representation is

piecewise-linear over each cross-section in ℜn obtained by

freezing any combination on n − 1 of the n coordinates.

It agrees with the conventional piecewise-linear representa-

tion for n = 1 (function of one variable), but for n ≥ 2 is

at least quadratic. For example if n = 3 then in the rep-

resentation appear all product term combinations such as:

x1, x1x2, x1x2x3, . . .. The coefficients of the representation

can be easily computed using the formulae given in [11] and

repeated below.

Let us consider the special case of this representation con-

cerning the continuous single-valued function of one vari-

able f(x1). With such functions we deal in single fault

diagnosis. We label the segments of f(x1) from 0 (leftmost

segment) through N and denote the slope of j-th segment

by mj . Any piecewise-linear function with N breakpoints

x
(1)
1 < x

(2)
1 < · · · < x

(N)
1 and leftmost point x

(0)
1 (rightmost

point x
(N+1)
1 ) lying on a straight line extending to −∞ (+∞)

can be represented uniquely using the following formula
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f(x1) = a0 + a1 x1 +

N∑

j=1

(bj |x1 − x
(j)
1 |), (1)

where the coefficients are given by:

a1 =
1

2
(m0 + mN ), (2)

bj =
1

2
(mj − mj−1), j = 1, · · · , N, (3)

a0 = f(0) −

N∑

j=1

(bj |x
(j)
1 |). (4)

The piecewise-linear characteristics expressing node voltages

(or the current of bias source) in terms of the circuit parame-

ters can be stored in the fault dictionary and used to a single

fault diagnosis [7].

Let us consider a single-valued continuous function of

two variables f(x1, x2). We assume that for given xi
2

(i = 1, · · · , N2) function f(x1, x
i
2) has N1 breakpoints

x
(1)
1 (xi

2) < x
(2)
1 (xi

2) < · · · < x
(N1)
1 (xi

2) and N1 + 1 seg-

ments with the slopes m0(x
i
2), · · · ,mN1

(xi
2). The function

f(x1, x2) can be described by the following section-wise

piecewise-linear canonical representation

f(x1, x2) =

= a0(x2) + a1(x2)x1 +

N1∑

j=1

(bj (x2)|x1 − x
(j)
1 (x2)|),

(5)

where:

a1(x2) =
1

2
(m0(x2) + mN1

(x2)), (6)

bj(x2) =
1

2
(mj(x2) − mj−1(x2)), j = 1, · · · , N1, (7)

a0(x2) = f(0, x2) −

N1∑

j=1

(bj (x2)|x
(j)
1 (x2)|). (8)

Representation (5) is specified by 2N1 + 2 functions of one

variable x2: a0(x2), a1(x2), bj(x2), x
(j)
1 (x2), j = 1, · · · , N1,

which can be described by the equation (1). The equation

(5) does not represent a two-dimensional piecewise-linear

function because, when expanded, it contains quadratic terms

x1x2. It represent a piecewise-linear function only for a fixed

value of x2.

Similarly any continuous function f(x1, x2, x3) which is

piecewise-linear over each cross section obtained by freezing

any two variables can be represented by the canonical form

f(x1, x2, x3) = a0(x2, x3) + a1(x2, x3)x1

+

N1∑

j=1

(bj (x2, x3)|x1 − x
(j)
1 (x2, x3)|),

(9)

where a0(x2, x3), a1(x2, x3), bj(x2, x3), x
(j)
1 (x2, x3),

j = 1, · · · , N1 are functions of two variables and can be

represented by the equation (5). The section-wise piecewise-

linear canonical representation for n > 3 can be found

in [11].

3. Building the fault dictionary

The section-wise piecewise-linear functions (SPLF) will be

used to build the fault dictionary. We assume the ranges of

changes of circuit parameters (e.g. resistances, forward β for

transistors) and we trace parametric characteristics express-

ing voltages at the test nodes in terms of the parameters. In

case n = 2 SPICE simulator [12, 13] can be used to obtain

the families of curves. We choose N1 and N2 depending on

the shape of the obtained curves. The numerical experiments

showed that it is more profitable to create functions SPLF

not for the values of voltages and parameters but for their

proportional changes in relation to the nominal values.

Fig. 1. Transistor circuit for an example

Let us consider the circuit shown in Fig. 1. The nomi-

nal values of the circuit elements and the node voltages are

indicated in the figure. We wish to determine the section-

wise piecewise-linear functions at node 1 and 3 in terms of

the parameters R3 and R4. We assume that the resistances

can change within the range ±30% of their nominal values,

i.e. R3 ∈ [84, 156] kΩ, R4 ∈ [420, 780] Ω. The families of

parametric characteristics V1(R3) and V3(R3) for R4 assum-

ing the discrete values belonging to the considered interval,

with the step equals 72 Ω, are shown in Fig. 2. We assume

N2 = 5 (R
(1)
4 = 420 Ω, R

(2)
4 = 450 Ω, R

(3)
4 = 600 Ω,

R
(4)
4 = 670 Ω, R

(5)
4 = 780 Ω), and N1 = 3 (R

(1)
3 = 100 kΩ,

R
(2)
3 = 120 kΩ, R

(3)
3 = 140 kΩ ). Next we convert the values

of the voltages and the parameters into relative changes (Ṽ1,

Ṽ3, R̃3, R̃4 respectively) and execute the description of the

families of characteristics using the SPLF representation (5),

e.g. the SPLF representation of Ṽ1(R̃3, R̃4) has the form

Ṽ1(R̃3, R̃4) =

(a0(R̃4))Ṽ1
+ (a1(R̃4))Ṽ1

R̃3 + (b1(R̃4))Ṽ1
| R̃3 − 16.67 |

+(b2(R̃4))Ṽ1
| R̃3 | +(b3(R̃4))Ṽ1

| R̃3 + 16.67 | .

(10)

The functions (a0(R̃4))Ṽ1
, (a1(R̃4))Ṽ1

, (b1(R̃4))Ṽ1
,

(b2(R̃4))Ṽ1
, (b3(R̃4))Ṽ1

are represented by the equation (1).

Similarly the SPLF for Ṽ3(R̃3, R̃4) is created.
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Fig. 2. Families of parametric characteristics

Fig. 3. The graphs of SPLF

As a result, the closed form analytical formulae for rep-

resenting 2–dimensional surfaces are created, which are then

stored as the signatures in the fault dictionary. To complete

the signature the lower and upper bounds of voltages V1 and

V3 (V1, V1, V3, V3, respectively) and the the lower and upper

bounds of resistances R3 and R4 (R3 = R
(0)
3 = 84 kΩ, R3 =

R
(4)
3 = 156 kΩ, R4 = R

(1)
4 = 420 Ω, R4 = R

(5)
4 = 780 Ω)

are stored. The graphs of the obtained SPLF are shown in Fig.

3, where DV1 = Ṽ1, DV3 = Ṽ3, DR3 = R̃3 and DR4 = R̃4.

4. Locating of the faulty elements

The process of the location of faulty elements and evaluating

the values of parameters consists of analyzing all the signa-

tures in the fault dictionary. After measurements in a tested

circuit we search for these signatures for which the measured

voltages are situated within the bounds connected with the

given signature. Usually at this stage some sets of potentially

faulty elements are eliminated. Afterwards the sets of nonlin-

ear equations are solved using e.g. the Newton-Raphson algo-

rithm or implemented in MATLAB the least squares method

(fsolve.m). As the result we receive the sets of parameter val-

ues. From these sets we eliminate the ones for which the re-

ceived values of parameters lie outside the ranges stored in the

fault dictionary. Finally we receive one or several solutions.

Some of them can be eliminated by performing additional

verifying research, e.g. executing the additional measurement

in the circuit under test (e.g. the current received from the DC

bias source) and carrying out SPICE simulations using the pa-

rameters from the obtained sets. Let us consider the example

from the previous section. We assume the double fault case:

R3 = 91 kΩ and R4 = 710 Ω. The measured voltages at the

test nodes with the precision 0.1 mV, are: V1 = 6.2812 V and

V3 = 2.8896 V. Using functions SPLF and the function fsolve

of MATLAB we obtain the following values of these parame-

ters: R3 = 91.3 kΩ and R4 = 713 Ω . The identical result can

be obtained after 4 iterations of the Newton-Raphson method.

The received values are very close to the assumed ones, that

confirms the usefulness of the section-wise piecewise-linear

representation in the fault diagnosis.

5. Numerical examples

The proposed method was implemented in MATLAB and

Delphi on PC Pentium Core2Duo 6400. The process of build-

ing of the fault dictionary was fully automated on the basis
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of a netlist of the circuit. Numerous tests on several practical

electronic circuits were performed. Two examples are present-

ed in this section.

5.1. Example 1. Let us consider the video amplifier [9] hav-

ing DC model shown in Fig. 4. We apply the parameters of the

transistors from libraries of the IsSPICE [13]. The nominal

values of the parameters and the nodal voltages of non–faulty

circuit are indicated in the figure. We build the double–fault

dictionary taking into account all the combinations of pairs

of resistors: R1, R2, R5, R6, R7, R9, R10. We assume that

the resistances R1, R2 can change in the range of ±30%,

and the remaining ones in the range of ±50%. Let nodes

8 and 11 be accessible for measurements. We execute suit-

able simulations and describe two–dimensional surfaces by

the the section-wise piecewise-linear functions. We choose

N1 from the range 1 ÷ 3 and N2 from the range 3 ÷ 5, de-

pending on shapes of surfaces. As a result, we receive the

fault dictionary containing 21 signatures. We assume that the

measurement precision is 0.1 mV. The efficiency of proposed

approach was verified on 40 sets of faults, including single

and double faults. The time of calculations for every of the

examined cases was below 100 ms. Five of the considered

cases are described underneath.

Fig. 4. DC model of video amplifier after Ref. 9

Case 1. Two elements R1 = 2.2 kΩ and R7 = 1 kΩ
are faulty. The measured voltages at the test nodes are:

V8 = 12.9834 V, V11 = 13.0851 V. The method developed in

the paper gives the unique set {R1 = 2184 Ω, R7 = 940 Ω}
of the faulty elements.

Case 2. Two elements R5 = 1.4 kΩ and R7 = 900 Ω
are faulty. The measured voltages at the test nodes are:

V8 = 11.0753 V, V11 = 9.7561 V. The proposed method

gives the unique set {R5 = 1437 Ω, R7 = 918 Ω} of the

faulty elements.

Case 3. One element R2 = 4.3 kΩ is faulty. The mea-

sured voltages at the test nodes are: V8 = 23.0992 V,

V11 = 6.1340 V. The method developed in the paper gives

6 sets of potentially faulty elements: {R1 = 2998 Ω, R2 =
4335 Ω}, {R2 = 4338 Ω, R5 = 1000 Ω}, {R2 = 4338 Ω,

R6 = 1199 Ω}, {R2 = 4338 Ω, R7 = 1700 Ω}, {R2 =

4338 Ω, R9 = 78 Ω}, {R2 = 4338 Ω, R10 = 3296 Ω}. Be-

cause all parameters in the pairs besides R2 are close to nomi-

nal, we conclude that the only faulty element is R2 = 4337 Ω.

Case 4. One element R1 = 2.4 kΩ is faulty. The mea-

sured voltages at the test nodes are: V8 = 18.6125 V,

V11 = 12.6012 V. The proposed method gives 11 sets of

faulty elements, six of them indicate that the faulty ele-

ment is R1 = 2401 Ω, and the remaining ones are: {R2 =
7130 Ω, R5 = 1010 Ω}, {R2 = 7202 Ω, R6 = 1141 Ω},

{R2 = 7133 Ω, R7 = 1689 Ω}, {R2 = 7175 Ω, R9 = 81 Ω},

{R2 = 7178 Ω, R10 = 2898 Ω}. To eliminate some pairs

we measure the current of the DC bias source E2. Then we

calculate this current performing SPICE simulations assum-

ing the values of the elements from the above sets. For the

single fault R1 = 2401 Ω we receive a value correspond-

ing to the measured one. In the case of the remaining pairs

of the elements some considerable differences appeared and

we eliminate these pairs. As a result we obtain the correct

identification of the faulty element.

Case 5. Two elements R6 = 780 Ω and R9 = 40 Ω
are faulty. The measured voltages at the test nodes are:

V8 = 20.8047 V, V11 = 10.4877 V. The proposed method

gives 9 sets of the faulty elements. We perform the verifica-

tion procedure similarly as in Case 4 obtaining the correct

set of the faulty elements {R6 = 805 Ω, R9 = 40 Ω}. The

percentage change of the current of source E2 for this set is

about 1%, while for the remaining 8 sets these changes vary

within the range of 17%–20%.

Fig. 5. DC model of voltage preamplifier

5.2. Example 2. Let us consider the voltage preamplifier hav-

ing DC model shown in Fig. 5. We apply the parameters of

transistors from libraries of the IsSPICE [13]. The nominal

values of the parameters and the nodal voltages of a non-

faulty circuit are indicated in the figure. We build a triple

-fault dictionary taking into account all the combinations of
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resistors: R1, R2, R3, R4, R5. We assume that the resistances

can change within a range of ±30% and we select nodes 1, 3

and 5 as the measuring ones. We execute suitable simulations

and describe the surfaces by the section-wise piecewise-linear

functions. As a result we receive the fault dictionary contain-

ing 10 signatures. We assume that the measurement precision

is 0.01 mV and verify the efficiency of proposed approach

on 25 sets of faults, including single, double and triple faults.

The time of calculations for every of the examined cases was

below 500 ms. Seven of the considered cases are described

below.

Case 1. One element R1 = 24 kΩ is faulty. The mea-

sured voltages at the test nodes are: V1 = 1.62857 V,

V3 = 0.20175 V and V5 = 7.81296 V. The method devel-

oped in the paper gives 6 sets of the faulty elements, which

indicates that the faulty element is R1 = 24250 Ω.

Case 2. One element R5 = 470 Ω is faulty. The mea-

sured voltages at the test nodes are: V1 = 1.53556 V,

V3 = 0.14722 V and V5 = 7.03699 V. The proposed method

gives 6 sets of the faulty elements, which indicates that the

faulty element is R5 = 474 Ω.

Case 3. Two elements R2 = 350 Ω and R3 = 150 kΩ
are faulty. The measured voltages at the test nodes are: V1 =
1.51531 V, V3 = 0.11026 V and V5 = 8.29234 V. The method

gives 3 sets of faulty elements: {R1 = 33261 Ω, R2 =
352 Ω, R3 = 151313 Ω}, {R2 = 350 Ω, R3 =
150009 Ω, R4 = 2700 Ω}, {R2 = 350 Ω, R3 =
150009 Ω, R5 = 620 Ω}. Because all parameters in the sets

besides R2 and R3 are close to nominal, we conclude that the

faulty elements are R2 = 350 Ω and R3 = 150145 Ω.

Case 4. Two elements R1 = 24000 Ω and R5 = 780 Ω
are faulty. The measured voltages at the test nodes are:

V1 = 1.62350 V, V3 = 0.20223 V and V5 = 8.66823 V.

The method gives 5 sets of faulty elements. The analysis of

these sets (similarly as in Case 3) leads to three solutions:

{R1 = 24139 Ω, R5 = 781 Ω}, {R1 = 25072 Ω, R2 =
488 Ω, R4 = 2159 Ω}, {R1 = 24097 Ω, R3 =
114695 Ω, R4 = 2159 Ω}. We perform the verification pro-

cedure similarly as in Example 1 obtaining the correct set of

faulty elements {R1 = 24139 Ω, R5 = 781 Ω}.

Case 5. Three elements R1 = 27000 Ω, R3 = 150000 Ω
and R5 = 470 Ω are faulty. The measured voltages at the

test nodes are: V1 = 1.62291 V, V3 = 0.17867 V and

V5 = 6.54962 V. The method gives one set of faulty ele-

ments {R1 = 27147 Ω, R3 = 150217 Ω, R5 = 474 Ω}.

Case 6. Three elements R2 = 380 Ω, R4 = 3300 Ω
and R5 = 800 Ω are faulty. The measured voltages at the

test nodes are: V1 = 1.49530 V, V3 = 0.12025 V and

V5 = 8.54127 V. The proposed method gives 7 sets of faulty

elements. Performing the verification procedure similarly as

in Example 1 we obtain the correct set of faulty elements

{R2 = 380 Ω, R4 = 3298 Ω, R5 = 800 Ω}.

Case 7. Three elements R2 = 600 Ω, R3 = 150000 Ω
and R4 = 2000 Ω are faulty. The measured voltages at

the test nodes are: V1 = 1.59344 V, V3 = 0.18740 V and

V5 = 9.00875 V. The proposed method gives 3 sets of faulty

elements: {R1 = 27630 Ω, R2 = 500 Ω, R4 = 2000 Ω},

{R1 = 26141 Ω, R3 = 111288 Ω, R4 = 2000 Ω},

{R2 = 600 Ω, R3 = 150015 Ω, R4 = 2000 Ω}. The

verification procedure does not eliminate any set. In this case

we obtain three solution, the one correct and two virtual ones.

6. Conclusions

The SBT approach, developed in this paper, enables us to per-

form efficiently the diagnosis of DC transistor circuits. A key

point of building of the fault dictionary is a description of

the n-dimensional surfaces using the section-wise piecewise-

linear functions. Numeric tests passed on several practical

electronic circuits confirmed the efficiency of the proposed

method. The large influence on the number of received solu-

tions has the value of deviations of the faulty elements and

the existence of ambiguity sets. In many cases it is necessary

to perform additional verifying procedures to eliminate some

sets. The influence of the chosen test nodes is also essential.

The DC sensitivity analysis can be helpful in this matter or

some specialized techniques of their optimal selection can be

used.
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