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Discrete-continuum transition at interfaces of nanocomposites
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Abstract. A number of micromechanical investigations have been performed to predict behaviour of composite interfaces,
showing that the detailed behaviour of the material at these interfaces frequently dominates the behaviour of the composite
as a whole. The interfacial interaction is an extremely complex process due to continuous evolution of interfacial zones during
deformation and this is particularly true for carbon nanotubes since the interfacial interaction is confined to the discrete
molecular level. The atomic strain concept based upon Voronoi tessellation allows analyzing the molecular structure atom by
atom, which may give a unique insight into deformation phenomena operative at molecular level such as interface behaviour in
nanocomposites.
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1. Introduction

Polymer based nanocomposites are a new class of com-
posites that are particle-filled polymers for which at
least one dimension of the dispersed particles is in the
nanometer range. Three types of nanocomposites can be
distinguished depending on dimensions of the dispersed
phase are in nanometer scale. When the three dimen-
sions are in the order of nanometers, we are dealing with
isodimensional nanoparticles such as spherical silica and
aluminum nanoparticles or semiconductor nanoclusters.
When two dimensions are in the nanometer scale and the
third is larger, forming an elongated structure, we speak
about nanotubes and nanowires. Finally, the third type of
nanocomposites is characterized by only one dimension in
the nanometer range. In this case the filler is present in the
form of sheets of a few nanometer thickness and up to one
micrometer long. This family of nanocomposites, known
as polymer layered crystal nanocomposites, is almost ex-
clusively obtained by the intercalation of the polymer in-
side the galleries of layered host crystals. Polymer-layered
crystal nanocomposites are now commercially available
and have been throughout investigated in a large number
of publications during last ten years [1–3].

Nanocomposites with elongated structural fillers have
recently attracted many investigations. A focus is almost
exclusively on nanocomposites with carbon nanotubes
(CNT) due to carbon nanotubes unique properties in-
cluding mechanical, thermal, optical and electrical [4–7].
However, after nearly a decade of research, their poten-
tial as reinforcement for polymers has not been fully real-
ized; the mechanical properties of derived composites have
fallen short of expectations. Yet, given the magnitude of
the carbon nanotubes mechanical properties, strength as

high as 200 GPa and elastic moduli close to 1 TPa range,
significant improvement on current composites should be
possible provided means to harness the nanotubes unique
attributes exhibited at nanoscale can be transferred to
the macroscale. One of the reasons that these excellent
mechanical properties of carbon nanotubes cannot as yet
to be utilized to a full extent (not mentioning their high
price) is our limited knowledge of physical mechanisms
taking place at nanotube-polymer interfaces. The inter-
facial interaction is an extremely complex process due
to continuous evolution of interfacial zones during defor-
mation. The stress transfer between reinforcing nanotube
and the polymer matrix critically controls the mechanical
properties of nanocomposites under different loading con-
ditions. The experimental evidence of such stress transfer
has been reported [8–10]. The random collapse sites of car-
bon nanotubes are also observed [11]. The load transfer
and fragmentation due to axial straining is also present
in classical fibre reinforced composite materials [12–13].
However it has to be noticed that interfacial phenomena at
nanotube and fibre interfaces are observed and described
at different length scales. Nanoscale systems are intrinsi-
cally of a discrete nature and the applicability of macro-
scopic continuum theories at that scale is not always ob-
vious. For instance, the analysis of nanoscale cantilevers
using macroscopic beam theory [14] possesses the inter-
pretation problem for cross sectional moment of inertia
present in a solution of Euler beam theory. Furthermore,
the theory predicts a linear variation of stresses across
the cross-section, a situation that is difficult to envisage
on the nanoscale. The only cases for which microscop-
ically based derivation of elasticity are documented are
uniformly strained lattices. A continuum theory breaks
down also for disordered, amorphous systems below a cer-
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tain length scale [15–19]. Classical continuum mechanics
is size independent which is in contradiction to the phys-
ical observations that at the size scale of a few nanome-
tres, deformations and elastic state are size dependent,
and a departure from classical mechanics can be expected
[20,21].

The atomistic simulations have been developed as an
important technique in multiscale modelling attempting
to bridge the gap between atomistic/molecular systems
and continuum. Large-scale atomistic simulations repre-
sent invaluable tool for the study of complex phenomena
originating at the atomic scale. However, direct molecu-
lar simulation of materials at micro- and meso-scale level
seems to be the objective for future atomic memory com-
puters. At present, the largest parallel computing system
is able to analyze 70 billion particles which correspond
to the material sample in the excess of one micrometer.
Continuum models are accessible to analytical techniques
that allow for broader investigation of different properties
once the fundamental physics from the atomistic model
are established. The key point here is that the information
involved in these two approaches is biased; i.e., continuum
approach is concerned with classical field quantities such
as Cauchy stress tensor and small deformation strain ten-
sor whereas these quantities do not have the same format
in discrete systems. Merging these approaches can be done
either by using more sophisticated continuum models be-
longing to the family of microcontinuum media and its
members [22–24] or elaborating new discrete quantities
which are ‘dual’ and have their appropriate counterpart
within the continuum model. The latter is not as simple
as it seems due to the ambiguity in stress calculations
at atomic level. The concept of Cauchy stress tensor is
essentially macroscopic and cannot be used directly to
the set of atoms/molecules which constitute a discrete
system. The most frequently used form for the stress at
atomic level is based upon the Clausius virial theorem,
which determines the stress field applied to the surface of
a fixed volume containing interacting particles (atoms). It
has been shown that the virial stress cannot be directly
related to the classical Cauchy stress and several modifi-
cations have been proposed [25–28]. It is essential to rec-
ognize that the stress at the location of an atom depends
on the details of the interatomic interactions and the posi-
tions of interacting neighbours. Hence, the atomic stress is
a non-local function of the state of the matter at all points
in some vicinity of the reference atom, in contrast to the
local stress field used in classical continuum theories. It is
also not clear how to use the virial stress formula for cases
where the interatomic interactions are described by some
multibody potential instead of pair potentials, although
some attempts have been made [29]. Furthermore, atoms
in bonded polymeric chains are subject to bending and
torsion moments, which are not included in the definition
of virial stress. Nevertheless, the virial stress has become
an important calculation tool for evaluating simulations
of nanomaterials.

It seems that the relationship between local displace-
ments of atoms and the strain tensor is not ambiguous
as the concept of atomic stress. Although different strain
measures can be formulated all of them rely on the coordi-
nates of atoms. Given a set of atom coordinates the struc-
ture of the molecular system can be analyzed by means of
the Voronoi tessellation, which divides space into regions
centered on these atoms. A Voronoi cell is the region of
space comprising points that are closer to the cell atom
than to any other atom. Voronoi cells fill space and define
a tessellation. The atomic strain tensor was calculated in
[30] to better understand changes in local structure. How-
ever, it has not been determined whether or not the sum of
local atomic strains corresponds to the total deformation
of the simulation cell when loaded by external forces.

In this work we relate a transformation matrix be-
tween two deformation states to the strain measure [31]
and modify it in order to take into account nonaffine de-
formations taking place in molecular disordered systems.
It is demonstrated that volume average of atomic strains
within a simulation cell corresponds to the overall strain
imposed on the boundary of the simulation cell. Further-
more, the interfacial sliding between carbon nanotube and
surrounding matrix molecules has been predicted as evi-
denced by experimental results using Raman microspec-
troscopy technique.

2. Field quantities in discrete systems
2.1. Stress tensor. The most frequently used form for
the stress at atomic level is based upon the Clausius virial
theorem, which determines the stress field applied to the
surface of a fixed volume containing interacting particles
(atoms) as follows
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where mα, Ωα and vα
i are respectively the atom mass,

atomic volume and component of the velocity vector, V is
the two-body potential acting between two atoms α and β
separated by the distance r, and Fα is the total force act-
ing on atom α from all β neighbours. The above expression
is well defined only for a system of perfectly equivalent
atoms, i.e. a homogeneous system. For systems containing
non-equivalent atoms as is the case for either point defects
or extended defects alternative prescriptions for defining
atomic stress tensor have been suggested in papers [27,32].
The former derives a stress-like formula from a local mo-
mentum balance equation using Dirac delta functions and
transformation into Fourier space that assumes an atomic
system of infinite spatial extent. Furthermore, the second
term in Eq. 1 is weighted by the fraction of the length of
the α–β bond that is contained within averaging volume
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Ωα, the quantity that is not straightforward to calculate.
The latter considers only one-dimensional chain system.
Yet another modification of atomic stress was introduced
in [28,33]. By using a finite-value and finite-ranged lo-
calization function [25] the following expression for the
atomic stress can be derived

σij(r) =
∑
α

mαvα
i vα

j ψ(rα − r) +
1
2

∑
α

∑
β 6=α

rαβ

⊗FαβBαβ(r)
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ψ(λrαβ + rβ − r)dλ,

rαβ = rα − rβ , ψ(r) ≈ f

(
r

Rc

)
(2)

where Bαβ is a bond function between atoms α and β rep-
resenting a weighted fraction of the bond length segment
between these atoms that lies within the characteristic
volume. The localization function v spreads out the prop-
erties of the atoms, and allows each atom to contribute
to a continuum property at the position r. This func-

tion has units of inverse volume and is non-zero only in
some characteristic volume surrounding the spatial point
r and usually is taken as a radial step function f having
a constant value within a spherical volume of radius Rc

and equals zero outside of the volume. The description of
atomic stress contained in Eq. 2 as a function of increas-
ing characteristic volume shows a quicker convergence to
values expected from continuum theory than volume av-
erages of the local virial stress [34]. Nevertheless, defini-
tions of atomic-level stress expressed in Eqs. 1 and 2 are
known to give unphysical results showing fluctuations of
the normal stress components at free surfaces. Attempt-
ing to calculate the total stress in the simulation box for
systems with stress-nonequivalent atoms it would result
in inclusion the contribution of regions where the virial
stress is ill defined. Furthermore, a direct calculation of
interatomic forces appearing in Eqs. 1 and 2 is not con-
sidered as a standard procedure in commercially available
molecular dynamics packages, which appears to be a seri-
ous obstacle to determine stress state for large molecular
systems.

Fig. 1. Tessellation in two-dimensional space: (a) Voronoi polygon and interaction cell between neighbouring atoms, (b) reference
and deformed configurations, (c) Voronoi polygon for central atom in reference and deformed configurations, (d) Interaction

cells for two neighbouring atoms in reference and deformed configurations
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2.2. Strain tensor. It seems that the relationship be-
tween local displacements of atoms and the strain tensor
is not as ambiguous as the concept of atomic stress. Al-
though different strain measures can be formulated all
of them rely on the coordinates of atoms. Given a set
of atom coordinates the structure of the molecular sys-
tem can be analyzed by means of the Voronoi tessellation,
which divides space into regions centered on these atoms.
A Voronoi cell is the region of space comprising points
that are closer to the cell atom than to any other atom.
Voronoi cells fill space and define a tessellation [35–37].
Given a set of atom coordinates the structure of the molec-
ular system can be analyzed by means of the Voronoi
tessellation, which divides space into regions centred on
these atoms. The atoms are assumed to be in their equilib-
rium positions, and thermal vibrations are averaged. The
Voronoi polygon (polyhedron in 3D) around central atom,
Fig. 1a is composed of a set of sub-polygons whose number
is determined by a number of neighbours to the central
atom. Sub-polygons unambiguously determine area (vol-
ume in 3D) belonging to the pair of atoms, which can
be considered as an interaction cell. During deformation
atoms move to new positions, Fig 1b, and the Voronoi
polygon associated with the atom changes it shape and
size, Fig. 1c. A new interaction cell is created, Fig. 1d,
which is described on each subsequent deformation step.
Figure 2 shows Voronoi polyhedral construction for two
neighbouring atoms sharing a common face and a single
interaction cell in three-dimensional case.

Fig. 2. Tessellation in three-dimensional space

The deformation gradient tensor that provides the
best mapping of the present and reference configurations,

which include atom and its neighbours, has the following
form

Ji = V−1
i Wi (3)

where
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Ni∑
j=1
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ji dji

Ji – represents affine transformation matrix, which mini-
mizes

Ni∑
j

∣∣d0
jiJi − dji

∣∣2
whereas d0

ji and dji represent distances from central atom
(i) to its neighbour (j) in the reference and the present
configuration, respectively. The local strain tensor for the
atom (i) can be then calculated as

Ei =
1
2

(
JiJT

i − I
)

(4)

The atomic strain tensor is calculated for the central atom
and all its neighbours and the total strain is defined as

Etot =
1
V

∑
i

V p
i Ei (5)

where V p
i is the volume of a polyhedron found for the

atom (i) and V is the total volume of all polyhedrons
within simulation cell.

2.3. Calculation examples. A diamond nanowire
loaded in axial tension is shown in Fig. 3 and the tes-
sellation of the reference state is illustrated in Fig. 4.
The nanowire has been loaded in three consecutive steps.
For each loading step the axial strain calculated from
boundary conditions read 0.0250, 0.0514 and 0.0832. Cor-
responding values obtained from Eq. 5 are 0.0204, 0.0487
and 0.0820. It is clearly seen that the atomic strain ob-
tained from boundary conditions and cell atomic strain
gives quite satisfactory results.

Fig. 3. Diamond nanowire in tension
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Fig. 4. Tessellation of nanowire in reference configuration

Fig. 5. Quadratic disc in shear

The second example considers shear deformation of a
quadratic disc subject to three loading levels. The atomic
system and corresponding tessellation for the reference
configuration are shown in Figs. 5 and 6. Boundary con-
dition shear strains at consecutive load levels are 0.0248,
0.0656 and 0.2007. Atomic strains are 0.0248, 0.0659 and
0.2138. Also in this example the atomic strain is satis-
factory as compared with the boundary condition strain.
It should be noted that the third loading step results in
large deformation which might be not suitable for the
description which assumes small strain conditions. Fig-
ure 7 shows disordered molecular system of polypropylene
chains. The simulation cell has been subjected to elonga-
tion in horizontal direction. Boundary conditions strains
are 0.0257 and 0.0482 whereas atomic strains are 0.0209,
0.0414, respectively. In this case atomic strains give signif-
icantly underestimated values. The reason for this discrep-
ancy is related to the role of the non-affine displacement
field. In disordered systems atomic displacements do not
generally become linear to deformation. Each atom moves

to its most stable position in response to the deformation
of the entire molecular system. These internal displace-
ments are constrained in regular lattice systems resulting
in homogeneous deformation. The presence of non-affine
deformations invalidates usually accepted Cauchy-Born
hypothesis that under the small linear displacement of the
simulation cell boundaries all atoms will follow this dis-
placement. However, it appears that under certain condi-
tions even regular crystal structures do not obey this rule
[38]. The quantity

Di =
Ni∑
J

∣∣d0
ijJi − dij

∣∣2 (6)

Fig. 6. Tessellation of disc in reference configuration

can be used as the diagnostic for identifying whether the
transformation of the reference configuration into present
one is close to or far from affine. Small values of Di indi-
cate affine character of transformation whereas large ones
point out the deviation from affine transformation. For the
nanowire and disc lattice systems this parameter is very
small in the range of 10−5 as averaged over all atoms in the
system whereas molecular polypropylene system exhibits
deviation from affinity hundred times larger. Thus for the
systems exhibiting nonaffine deformations the concept of
atomic strain has to be modified in order to match overall
strains calculated from boundary conditions imposed on
the simulation cell.

2.4. Modified atomic strain. The idea is to modify
the deformation gradient tensor Ji so as to provide a bet-
ter match of the reference and present configurations if
there is a clear indication that the transformation may
deviate from the affine one. Instead of analyzing the cen-
tral atom and all its neighbours at once the connections
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of the atom with subsequent neighbours are treated sepa-
rately. In other words the Voronoi polyhedra are replaced
by a set of interaction cells. For each interaction cell the
modified deformation gradient is defined:

J mod
ji = Ji + δJji (7)

Fig. 7. Polypropylene simulation cell in reference configuration
(a) and at two deformation levels (b) and (c)

where Ji stands for the deformation gradient found for
the atom (i) according to previously described concept.
The corrections δJji are determined with the use of an
optimization procedure. For each interaction cell the op-
timization problem is formulated as follows

minimize

∣∣d0
jiJ

mod
ji − dji

∣∣2 (8)

In order to solve the above problem the Simulated An-
nealing algorithm has been adopted. For each case the
value of maximal allowable correction has been specified.
For the lattice systems analyzed above modification of
the interaction cell atomic strain does not improve cal-
culations of total strains in any significant way. On the
other hand, the modification of polypropylene disordered
system with relatively strong non-affinity is significant.
The total modified strains have values 0.0256 and 0.0480,
which corresponds very well with strains calculated from
boundary conditions.

3. Deformation of nanocomposites
with carbon nanotubes

3.1. Interfacial sliding. Molecular modeling and
molecular dynamics simulations have been performed
on all systems presented in this work. Inter- and in-
tramolecular atomic interactions in the polypropylene

and polypropylene carbon nanotube composite systems
have been modeled using a generic force field DREIDING
[45] whereas ab initio COMPASS [46] forcefield has been
used for modeling and molecular dynamics simulations
of diamond wire and diamond quadratic disk. At first,
the system is constructed and subject to energy mini-
mization using Polak-Ribiere conjugate gradient method.
Molecular dynamics simulation is performed next, using
isothermal-isobaric ensemble (NTP) that keeps temper-
ature and pressure constant, in order to obtain an equi-
librium state which simultaneously serves as a reference
state. A simple load is applied to the simulation cell in
consecutive steps and equilibration is performed after
each loading step.

Modified interaction cell atomic strain concept has
been applied to analyze a nanocomposite system consist-
ing of polypropylene chains with embedded carbon nan-
otube, Fig. 8. The nanocomposite has been subject to
uniaxial tension along the nanotube axis and the analysis
has been performed for eight deformation steps. Figure
9 illustrates stress-strain diagram of the system which is
based on calculation of the total strain implementing in-
teraction cell atomic strain modification. It is clearly vis-
ible that the departure from linearity occurs at the total
strain around 0.01 and one may expect an appearance
of non-elastic mechanisms operative in the interior of the
molecular system.

Fig. 8. Carbon nanotube/polypropylene nanocomposite in ref-
erence configuration (a) and in deformed state (b)

A number of micromechanical investigations have been
performed to predict behaviour of composite interfaces,
showing that the detailed behaviour of the material at
these interfaces frequently dominates the behaviour of the
composite as a whole. In that respect nanocomposite ma-
terials are not an exception. On the contrary, since the
surface area of nanowires and nanotubes is by a few or-
ders of magnitude larger that corresponding surface area
of classical fibres at the same volume fraction, an inter-
pretation of interfacial interaction in nanocomposites be-
comes a critical issue. This effect is illustrated in Fig. 10,
where a conventional fibre and nanotube posses the same
aspect ratio equal to 100. Surface area of the fiber is the
same as surface area of 36 × 104 nanotubes whereas one
needs 22 × 107 nanotubes to fill the volume of the fibre.
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Fig. 9. Stress-strain diagram of the nanocomposite

Fig. 10. Geometrical effect of surfaces and volumes

Fig. 11. Voronoi tessellation of carbon nanotube innanocom-
posite reference (a) and deformed state (b

Thus the geometrical effect of the surface is three or-
ders of magnitude larger than the volume effect. If we
assume that the fiber volume fraction in the unit cell in
Fig. 10a is 33% then we need only 0.06% volume fraction
of nanotubes to get the same surface area of the rein-
forcement. In this context the concept of interaction cell
atomic strain can be very useful allowing to extract sur-
face atoms and investigate a molecular structure in parts
or even atom by atom. Figure 11 shows Voronoi tessella-
tion only for atoms belonging to carbon nanotube. These

are two configurations being taken from the nanocom-
posite systems in Fig. 8. An overall strain of the nan-
otube has been calculated for each deformation level of
the nanocomposite using modified interaction cell atomic
strain concept, Fig. 12. The nanotube strain follows the
strain of nanocomposite to a certain loading level and then
lags after it as loading of the nanocomposite increases.
This is clear evidence that we need to deal with an inter-
facial sliding. It should be noticed that initiation of slid-
ing takes place at the same strain level as the departure
from the linear behaviour indicated in the stress-strain
diagram.

Fig. 12. Evolution of the overall nanotube strain as compared
to the total strain of the nanocomposite

Fig. 13. Schematic chart of the Raman spectra acquisition

3.2. Experimental verification. Single-wall carbon
nanotube polypropylene fibres have been manufacture ac-
cording to the procedure detailed described in [39]. Ra-
man scattering spectra of the nanocomposite fibres were
measured in backscattering geometry schematically illus-
trated in Fig. 13. The fibres were mounted in the mini
tensile device for measurements at various strain levels.
The Raman spectra of nanotubes have been acquired us-
ing the He-Ne 632.8 nm laser. The spot size of the laser
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is several orders of magnitude larger than dimensions of
the nanotubes and the Raman spectrum is an average
response from many nanotubes. The orientation distribu-
tion of nanotubes in the polymeric matrix can also be
assessed using Raman polarized measurements. The in-
tensity of Raman scattering decreases significantly as the
angle between the fibre axis and the polarization direc-
tion changes from 0 to 90◦ which suggests that nanotubes
preferential orientation is along fibre axis [39]. The Raman
spectrum of nanotubes is shown in Fig. 14.

Fig. 14. Raman spectrum of carbon nanotubes

Fig. 15. Strain induced shift of the G‘ Raman peak

The typical Raman spectrum of carbon nanotubes
consists of four distinct features. In the low frequency
range the radial breathing mode (RBM) is attributed to
the simultaneous movement of carbon atoms in the radial
direction of the nanotubes. The band is strongly coupled
to the diameter of the nanotubes and nanotubes with a
particular diameter can dominate RBM spectrum [40].
This coupling can be applied to probe diameters of nan-
otubes. By applying lasers with different excitation wave-
lengths RBM frequency will change depending on the nan-
otube diameter. The D band is related to finite size effects
and the presence of disordered elements such as defects in
the atomic structure [41]. The frequency of the D band
has been shown to be linearly dependent on strain ap-
plied to the nanotube [42]. When the nanotube is loaded
in tension the frequency moves toward lower wavenum-
bers while tubes loaded in compression will yield the D

band at a higher wavenumbers. The peaks of G band are
attributed the tangential stretch modes when the carbon
atoms in the nanotubes vibrate in the tangential direc-
tion. The last spectral feature appears as G‘ band (also
known as D* band) and is strain dependent. The band
comes from the second order scattering and is an over-
tone to the D band. Its intensity is significantly higher
than the D band and therefore it is frequently used to
detect the deformation of carbon nanotubes. The remain-
ing band observed in Fig. 14 are assigned second order
scattering either as overtones or as combination modes.

Figure 15 illustrates strain induced shift in carbon
nanotubes embedded in the polypropylene matrix. The
strain-peak shift curve changes slope at around 0.01
strain. This value corresponds nicely to the molecular
dynamics simulation results and calculations of atomic
strains at the interface. The slippage of the nanotubes in
the polymer matrix followed by pullout of the tubes from
the matrix has been observed in other studies [8,43]. It has
been argued [39] that the change of slope is attributed to
structural changes in the polypropylene matrix Isotactic
polypropylene is mainly composed of α-phase crystalline
structure. However during deformation a partial phase
change is taking place and β-phase appears which has a
lower stiffness and yield stress than the α-phase. This re-
sults in a similar change of slope for a pure polypropylene.
However it should be bearded in mind that the strain-
shift slope beyond 0.01 strain level is not zero indicating
that the stress transfer is still taking place. Furthermore,
as already stated, the Raman spectrum is averaged over
area significantly larger than a single nanotube and this
does not preclude that slippage may occur at some of the
nanotube interfaces.

4. Conclusions

The atomic strain concept allows analyzing the molecular
structure atom by atom, which may give a unique insight
into deformation phenomena operative at molecular level
such as interface behaviour in nanocomposites. This work
demonstrated that the local atomic strain concept is fea-
sible only when it is possible to use it for calculation of
overall strain exerted on the simulation cell. Furthermore,
presence of non-affine deformations in molecular systems
necessitates detailed analysis pertaining to determination
of molecular mechanisms responsible for this kind of be-
haviour. There exists some evidence that at least for cross-
linked amorphous systems, the affine transformations are
due to molecular stretching whereas non-affine ones are
dominated by bending modes [44]. It might be hypoth-
esized that in amorphous molecular systems the defor-
mation of Voronoi polyhedra differs from atom to atom,
however there will be no topological changes as long as the
deformation is homogeneous and elastic i.e. the number
of faces, edges and vertices does not change. In nanos-
tructures subject to inelastic deformation we may expect
polyhedral transformation resulting in a change of shape,
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size and a change in the number of faces, edges and ver-
tices [37]. Eventually, one could expect to find a relation
between topological changes of Voronoi polyhedra and
non-affine deformations. In principle, each appropriately
selected strain measure is able to provide information on
local changes at atomic sites as loading increases. How-
ever, the true test of the atomic strain concept is how
well it approximates total strain of the simulation cell by
summing local atomic strains over all atoms present in the
system. In the best case this sum should be equal or very
close to the total strain calculated from boundary condi-
tions of the simulation cell as it has been documented in
the present work.

An extended simulation study should consider influ-
ence of nanowire geometry such as aspect ratio and diam-
eter on interfacial stress distribution, both of which affect
stress transfer behaviour. Furthermore, an immobilization
of polymer chains in a vicinity of nano-inclusions should
be investigated in order to determine an effective domain
of reinforcement of the polymeric matrix. All these anal-
yses would be facilitated by the use of atomic strain con-
cept, which allows analyzing the molecular structure atom
by atom.
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