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3D self-consistent solution of Poisson and Schrodinger
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Abstract. In this work we discuss 3D selfconsistent solution of Poisson and Schrédinger equations for electrostatically formed
quantum dot. 3D simulations give detailed insight into the energy spectrum of the device and allow us to find values of respective
voltages ensuring given number of electrons in the dot. We performed calculations for fully 3D potential and apart from that
calculations for the same potential separated into two independent parts, i.e. regarding to the plane of 2DEG and to the direction
perpendicular to the meant plane. We found that calculations done for the two independent parts of the potential give good
information about quantum dot properties and they are much faster compared to fully 3D simulations.
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1. Introduction

Quantum dots are nanoscale devices which may be used in
many nanoelectronic applications. For example they may
be treated as the memory cells which can be arranged
into matrixes and form whole memory circuits. Numeri-
cal simulations performed even for a single quantum dot
appear very complicated. The reason is that Poisson and
Schrodinger equations must be solved to describe elec-
tronic states in such a system [1]. Both the equations must
be solved numerically and must regard to the special de-
sign of the given device.

In the work we present results of simulations which
were done for quantum dot formed electrostatically in an
inverted heterostructure (Fig. 1) [2—4].

The structure is driven by voltages Ugg and Ugg po-
larizing respective electrodes. Suitable value of Ugg allows
to create two-dimensional electron gas (2DEG) in GaAs
region very close to GaAs/AlGaAs heterojunction. The
voltage Ugg eliminates created 2DEG in the region under
the splitted, upper electrode E. This way, in the central
part of the structure, a quantum dot is formed. In order
to describe the potential distribution over the structure
we performed the numerical solution of Poisson equation
in 3D space.

Looking for electron states in the device relies on find-
ing of Schrodinger equation solutions. We did it for fully
three-dimensional potential distribution. 3D Poisson and
Schrodinger equations were solved self-consistently.

Three-dimensional model of the structure is quite de-
manding because of computational complexity and re-
quest for large computer memory. Our aim was to check
up if the approach in which electron gas is treated sep-
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arately in a plane of 2DEG (x-y plane) and separately
in z direction (perpendicular to a heterojunction), can
provide acceptable results. To reach the aim we had to
perform simulations in the other way — treating electron
gas in a mentioned above simplified manner. We solved
one-dimensional Schrédinger equation for the part of po-
tential distribution corresponding to z direction. As a
result we obtained the ground state of 2DEG together
with the electron gas density distribution. We verified
how far from a heterojunction there was the maximum
of the calculated electron gas density. In the stated xy
plane we performed self-consistent solution of 2D Poisson
and Schrodinger equations. Superposition of the results
obtained for 1D and 2D problems gave final information
which could be compared with the results obtained in fully
three-dimensional simulations.

Fig. 1. The model of analyzed device
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2. Numerical model and the simulation
method

Numerical analysis of the problem requires solving of Pois-
son equation for the device:
p(r)

AV (I‘) - _?7 = (.’E,y, Z) (1)

where p denotes electrical charge density in the region of
2DEG, describing electron gas outside the quantum dot
(i.e. in two regions neighbouring with source and drain
— Fig. 1). During the analysis, we specified the values of
the potential in the five conductive regions. These regions
are metallic electrodes: G, D, S and the splitted electrode
E. Two undoped semiconductor layers (i.e., AlGaAs and
GaAs) are treated as dielectrics with different permitivi-
ties — 1 and e, respectively. We solved Eq. (1) assuming
boundary conditions concerning constant potential over
the surfaces of five mentioned electrodes and in the re-
gion of 2DEG. At the interface of non-doped AlGaAs and
GaAs layers we have also assumed the continuity of the
potential and of the normal component of electrical in-
duction. Because charge density p is not known function,
numerical solution of the Eq. (1) had to be performed in
a self-consistent manner.

The function V (r) was searched for in the form of
single layer potentials:

1
‘/l<p2) - 47'(_57,' |I‘| d Siy (2)

1 — for AlGaAs region
2 — for GaAs region

where: i = {

In the Eq. (2) og, describe charge densities correspond-
ing to single layer potentials at the surfaces S; , which
define the boundaries of i-th region. In the same equation
r = (z,y, 2) is the distance between any point p; of i-th
region and any point laying on the boundary surfaces of
the region. To solve the Egs. (1) and (2) we used boundary
element method and Gauss method dedicated for sets of
linear equations [4]. As a result we have obtained three-
dimensional potential distribution over the investigated
structure.

Suitable potential formation in the plane of electron
gas gives the possibility to create a quantum dot in a cen-
tral part of the structure. We looked for charge density in
the dot applying quantum mechanical formalism. Energy
levels E and wave functions V¥ (r) describing electrons in
a dot, fulfill Schréodinger Eq. [5]:

2

o AV (r)+e

2mGaAs
Potential V' (r) has the origin from voltages biasing the de-
vice. Electron’s effective mass m, 4, corresponds to the
minimum I" in GaAs layer. Interactions among N electrons
in the quantum dot were described by Hartree potential

Vi (I‘):

[V (£) + Vi (£)] ¥ (x) = BV (r) (3)

W (r))l

Z /4775 v — 1y dQ' @)
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In the case of true three-dimensional analysis r =
(x,y,%). Wave function ¥; (r;) describes the j-th elec-
tron in the well (j = 1,..., N ) and corresponds to the
appropriate energy level of the whole spectrum FE.

The charge accumulated in the dot (expressed as

1N
3 |\I/j(rj)|2) influences potential distribution over the
J

structure. Because of that Egs. (3) and (1) must be solved
iteratively until charge and potential distributions don’t
change in succesive iterations.

In this work we report simulations performed with
fully three-dimensional model of the device. We present
obtained energy spectrum F = E, , , and charge density
in the dot determined with the help of calculated wave-
functions ¥ (z,y, 2).

In the paper we also discuss three-dimensional results
obtained in the other and much faster way. To obtain them
we have solved one-dimensional Schrédinger equation in
the form:

2
f AV (2)+eV (2)¥ (2) = E,V (2). (5)
2mGaAS

It allowed us to find energy levels E, appearing due to
confining of electron’s motion in z direction. Localization
of the lowest energy level E,; (related to the potential
of source Vg = 0) indicates whether the value of Ugg
is sufficient to form electron gas in the dot. Energy FE.;
fulfills Eq. (5) together with wave function ¥; (2). We
have found the maximum of ¥, (z) and indicated how
far from a heterojunction the electron gas should be ana-
lyzed if it is treated as two-dimensional. Over the discov-
ered x-y plane we determined the potential distribution
V (x,y,z = const.) and we solved Eq. (3) in 2D space [6].
This way we obtained supplemental information about
electron states in the dot, i.e. energy spectrum E = E, ,
and wave functions ¥ (z,y). In order to state occupied
energy levels in the dot energies I, were shifted by
the value of E,1. In the case of wavefunctions we formed
products of ground state wavefunction ¥ (z) with ¥ (z, y)
wavefunctions refering to subsequent £ , levels.

In the work we compare results of 3D simulations ob-
tained with the help of both described methods. This was
the primary aim of our work. However, particular sim-
ulations gave us also the opportunity to conclude about
arising of zero-dimensional electron gas in different bias-
ing conditions.

3. Results

We performed simulations for the structure with charac-
teristic dimensions as illustrated in Fig. 2.

Calculations were done for biasing voltages: Ugs =
557 mV, Ugs = —220 V and Upg = 0 V. There were con-
sidered different permitivities of GaAs and AlGaAs layers
(13,2 and 12,8 respectively). We solved Eq. (2) in three
dimensions. As a result we found potential distribution
V (z,y, z) over the structure. In order to find charge den-
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Fig. 2. (a) Side view and b) top view of the device. In both figures there are marked sizes of the structure. In calculations there
were taken the following values of respective dimensions (expressed in nm): zeg = 700, zed = 670, zsg = 620, zst = 600, zsd =
580, zbg = 300, T, = 800, T;, = 400, z, = 50, x, = 150, = = 400, z. = 600, y, = 50, y» = 200
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Fig. 3. (a) Potential energy in 3D space, obtained from Eq. (2) and taken into account in Eq. (3). There are shown 7 dependencies

eV (z,y,z = const.) for 7 values z = kAz where Az = 10 nm. In every illustrated dependence eV (z,y, z = const.) coordinate

y changes in the interval of —200 = 200 nm. Quantum well referring to k = 1 (marked with the circle) corresponds to maximum

of electron density in the dot and it is considered in Eq. (3) in 2D space. b) Charge density distribution for four electrons in
the dot, corresponding to three-dimensional potential energy in Fig. (a)

sity in the dot we analyzed the region of dimensions:
T, = 800 nm, T, = 400 nm and 7, = 70 nm (Fig. 2b,
2a). In true 3D simulations we found that the maximum
of charge density occurs at the distance of 10 nm from
GaAs/AlGaAs contact (Fig. 3b). Calculations were per-
formed with the discretization mesh 32 x 16 x 7. For such
case the matrix of Hamiltonian required almost 100 MB of
the computer operating memory. The whole selfconsistent
analysis lasted 103 hours.

Further simulations for the device we did in a sim-
plified manner. We solved Eq. (5) with the potential
V(2) =V (0,0, 2). Calculated energy levels E.;, E,; and
wave function ¥y (z) for the lowest energy level are shown
in Fig. 4b. We stated that only the base level E.; is
lying below reference energy which is equal to 0. More-
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over, in Fig. 4b we can see that the maximum of charge
density distribution appears at the same distance from
heterojunction as we have stated earlier in fully three-
dimensional simulations (i.e. 10 nm from GaAs/AlGaAs
contact). Localization of the base energy level, below ref-
erence energy, denotes that there is fulfilled fundamental
condition for the existence of electron gas in the dot.

In the next step of simulations we calculated energy
levels E,, and wave functions W (x,y) for the poten-
tial V' (z,y) = V (x,y, 2 = 10nm). Obtained energies F, ,
were added to the value of F,; and this way we got the
spectrum which could be compared to energies F ,, . cal-
culated from Eq. (3) in truly 3D space.

In Fig. 4a there are shown energy levels E, , . and
E, , + .1 obtained by the solution of Schrédinger equa-
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tion including coulomb interaction among 4 electrons in
the dot. In the figure there are also shown differences
E.y. — (Ezy+ E.1) for particular level numbers. The
differences are nearly the same as AFE,q, which expresses
the change of F,; caused by interaction among electrons
in the dot.

Figure 4b presents quantum well in z direction to-
gether with energy levels F,; = —8.12 meV and E,, =
5.90 meV. Both mentioned energies and presented in the
same figure charge density distribution p(z) were ob-
tained by solving of Eq. (5).

In the simplified analysis the 1D problem (in z di-
rection) was described by the use of the discretization
mesh with the same number of nodes as for fully 3D cal-
culations. Hamiltonian was represented by a matrix of
only 49 elements and therefore energies F, and wavefunc-
tions W (z) were found just immediately. Additionally it
was tested that the same calculations performed with the
mesh containing 70 nodes (Az = 1 nm) took only 2 sec-
onds.

The results of 2D analysis were obtained with the dis-
cretization mesh which contained 32 x 16 nodes. In this
case the matrix of Hamiltonian was stored in only 2MB
of the computer memory. Furthermore, these calculations
were done within only 12 minutes.

Validity of the ‘2D+1D’ analysis can be confirmed by
the results of measurements. Experimental spectra ob-
tained for the arrays of quantum dots were presented in
the works [7,8]. The dots formed in squares of 500 x 500
nm? and smaller ones were measured with the help of far-
infrared (FIR) spectroscopy. It was found that the spacing
between successive energy levels in these dots took the val-
ues of only a few meV. On the other hand, the separation
between the quantized energy levels E, being the conse-
quence of the conduction band non-continuity, is much
greater. In the devices which take the advantage of the
hetero-interface (including quantum dots) only the lowest
level E.q is occupied. The next level E.5 lies a dozen of
meV above E,; [9)].

The above discussion shows that the constriction of
electron’s motion in z direction is much stronger than in
x-y plane. This is the reason for which the system may
be analyzed separately in the plane of 2DEG and in the
direction perpendicular to the heterointerface.

4. Summary and conclusion

The results presented in this work are partial results of
the project, the aim of which is to create the simulator
for single electron transistor formed in ISIS structure. Nu-
merical complexity of calculations and necessity to process
big matrices, which describe three-dimensional model of
the device motivated efforts for searching more optimal
solutions with respect to computational time as well as
precision of calculations.
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Fig. 4. (a) Energy levels E; , . calculated in fully 3D simu-
lations are compared to energies obtained as a sum of values
E., and E.; gained in 2D and 1D simulations, respectively.
During simulations coulomb interaction among 4 electrons in
the well was taken into account. In the figure there are also
shown differences E, . — (Esy + E.1) for particular level
numbers. The differences are nearly the same as AFE.1, which
expresses the change of .1 caused by interaction among elec-
trons in the dot. (b) There is shown the quantum well in z
direction, described as eV (z). Energy levels E.; = —8.12 meV
and F,2 = 5.90 meV are marked in the well. In the figure there
is also presented charge density distribution p(z) obtained by
solving of Eq. (5)

Calculated potential distribution in 3D space (Fig.
3a) proves that Schrodinger equation may be considered
separately in the direction perpendicular to heterojunc-
tion and in the plane of 2DEG. Such treatment of self-
consistent solution of Poisson and Schrédinger equation
allows for substantial accelerating simulations compar-
ing to the analysis in 3D space. However, the results of
‘2D+1D’ calculations have to be analyzed with great care,
in particular with regard to positions of energy levels,
which determine the number of electrons in quantum dot
for a given electrode potentials. The agreement between
two methods has been demonstrated, providing that the
identical discretization schemes have been used.
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