
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 55, No. 2, 2007

Modelling drop dynamics on patterned surfaces
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Abstract. We present a mesoscopic model able to capture the physics of drops moving across patterned surfaces. In this model,
interfaces appear naturally, and both chemical and topological patterning can be incorporated with relative ease, making it
particularly suitable to study the behaviour of evolving drops. We summarise results on drop dynamics, including drops spreading
on a chemically patterned surface, using a hydrophobic grid to alleviate mottle and the transition and dynamics of drops moving
across a superhydrophobic surface.
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1. Introduction
From microfluidic technology to detergent design and ink-
jet printing it is vital to understand the way in which
drops move across surfaces. The dynamics of the drops
will be affected by any heterogeneities on the surface.
Until recently such disorder was usually regarded as un-
desirable. However with the advent of microfabrication
techniques it has become possible to control the chemi-
cal and topological patterning of a substrate on micron
length scales, leading to the possibility of exploring new
physics and to novel applications.

There are many natural examples where surface pat-
terning has evolved to enhance biological functions. For
example several plants [1], such as the lotus, have leaves
which are covered with micron-scale bumps. As a result of
this topological patterning they are strongly repellent to
water drops which show contact angles up to 160o. (This
should be compared to more traditional ways of increasing
the contact angle, surface coatings and chemical modifi-
cations of the substrate, where it is difficult to achieve an
angle of more than 120o.) The evolutionary advantage to
the lotus appears to be the easy run-off which helps to
clean the leaves of the plant.

Another example is the Namibian desert beetle which
collects water on its back from a fog-laden wind [2]. The
beetle’s back is bumpy and covered with alternating hy-
drophilic and hydrophobic regions. Large drops of water
condense onto the hydrophilic bumps. The size of the
drops then allows them to roll against the wind into the
beetle’s mouth.

It is becoming increasingly easy to fabricate similar
surfaces, with micron-scale regions of different wettabil-
ity [3–5] , or with a pattern of posts [6–9] as roughness
leading to superhydrophobic behaviour. Increasingly such
surfaces are finding industrial applications. For example,
hydrophobic regions can be constructed to act as chemi-
cal valves confining drops of fluid until a sufficiently large

force is applied and hydrophilic channels etched onto a
surface have been used as templates for ink-jet printing
of electronic circuits.

However, many fundamental questions remain about
the way in which drops move across patterned surfaces.
For example, superhydrophobic surfaces can show both
high contact angle and fast run-off and the connection
between these properties is not fully resolved. We would
like to understand more fully how chemical patterning
can control drop motion and whether superhydrophobic
surfaces can be helpful in reducing drag in microchan-
nels. This review summarises recent work on a mesoscopic
model that is allowing us to investigate questions like
these. We first summarise the model and then describe re-
sults for chemically and topologically patterned surfaces
in section 3 and 4 respectively. We summarise and discuss
areas for future research in Section 5.

2. The model
The model needs first to describe the equilibrium prop-
erties of the drop, such as liquid-gas coexistence, surface
tension and contact angles. As we are working on micron-
length scales we can use a continuum Landau free energy,
which is minimised in equilibrium:

Ψ =
∫

V

(ψb(n) +
κ

2
(∂αn)2)dV +

∫
S

ψs(ns)dS. (1)

ψb(n) is a bulk free energy term which gives two coexisting
phases. A simple example is the free energy corresponding
to the van der Waals equation of state

ψb(n) = pc(νn + 1)2(ν2
n − 2νn + 3 − 2βτw) , (2)

where νn = (n − nc)/nc, τw = (Tc − T )/Tc and n, nc,
T , Tc and pc are the local density, critical density, local
temperature, critical temperature and critical pressure of
the fluid respectively. β is a constant typically chosen to
be 0.1. This choice of free energy leads to two coexisting
bulk phases of density nc(1 ±

√
βτw).
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The second term in Eq. (1) models the free energy
associated with any interfaces in the system; κ con-
trols the liquid-gas surface tension and the width of
the interface via γ = (4

√
2κpc(βτw)3/2nc)/3 and ξ =√

(κn2
c)/(4βτwpc) [10].

The last term describes the interaction between the
fluid and the solid surface. For example, following Cahn
[11], the surface energy density can be taken as ψs(n) =
−φns where ns is the value of the density at the surface.
The strength of the surface interaction φ is related to the
contact angle θ of a drop on the surface by [10]

φ = 2βτw

√
2pcκ sgn(

π

2
− θ)

√
cos

α

3
(1 − cos

α

3
) , (3)

where α = cos−1 (sin2 θ) and the function sgn returns the
sign of its argument.

The hydrodynamics of the drop is described by the
continuity and the Navier-Stokes equations

∂tn + ∂α(nuα) = 0 , (4)
∂t(nuα) + ∂β(nuαuβ) = −∂βPαβ

+ν∂β [n(∂βuα + ∂αuβ + δαβ∂γuγ)] + naα ,

where u, P, ν, and a are the local velocity, pressure
tensor, kinematic viscosity, and acceleration respectively.
(The Einstein summation convention over repeated in-
dices is assumed.) The pressure tensor P is calculated
from derivatives of the free energy [10]

Pαβ ≡
[
∂βn

∂

∂(∂αn)
− δαβ

]
(ψb − µbn +

κ

2
(∂γn)2)

= (pb(n) − κ

2
(∂αn)2 − κn∂γγn)δαβ

+ κ(∂αn)(∂βn) , (5)
pb(n) = pc(νn + 1)2(3ν2

n − 2νn + 1 − 2βτw).

The term µbn is a Lagrange multiplier imposing mass con-
servation. For u = 0, achieving mechanical equilibrium
∂αPαβ = 0 is equivalent to minimising the free energy.

Finally, we impose a no slip boundary condition u = 0
on the surfaces. Although there is evidence for increased
local slip on hydrophobic surfaces [12] this is still on the
nm level and so would not show up on the scale of these
simulations. It is also important to note that the three
phase contact line is able to move even with a no slip
boundary condition on the velocity. This is because the
interface has a finite width which allows an evaporation-
condensation mechanism. References [10,13–19] discuss
the dynamics of contact line motion in diffuse interface
models in more detail.

We used a lattice Boltzmann algorithm [5,10,20] to
solve Eqs. (4) and (5) to obtain the results reported here,
but other numerical approaches would be equally appli-
cable.

3. Chemical patterning
In this Section, we describe how (regular) chemical pat-
terning can influence the dynamics of micron-length liquid
drops. In the first part, we look at a drop spreading on a
chemically patterned surface. For a homogeneous surface,
the final state is unique: the drop will form a spherical
cap with a contact angle equals to the Young’s angle [19].
This is not the case for heterogeneous surfaces: there can
be more than one metastable drop configuration and the
final morphology of the drop depends heavily on the ini-
tial conditions of the system.

We then in the second part consider a drop driven by
an external body force and study the competition between
this and the capillary forces. We choose a simple volume
term for the body force (modelling, for example, gravity).

Fig. 1. Drop spreading on a chemically striped surface. (a) Scanning electron micrographs of inkjet drops. (b) Numerical
simulations of drops hitting the surface at various impact points indicated by encircled crosses. For each drop the bold and
faint lines represent the extent of the drop at equilibrium and at intermediate times, respectively. Relatively hydrophilic and

hydrophobic stripes appear dark and pale, respectively. The figures are taken after Ref. 5
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Fig. 2. Drop moving across a chemically striped surface. The evolution of the drop shape is shown in frames (a)–(d). Hydrophilic
and hydrophobic stripes appear dark and pale, respectively. The figures are taken after Ref. 23

We end Section 3 by providing an example where
chemical patterning may be applied to solve industrial
problems. In the third part we show how a (relatively)
hydrophobic grid can be used to alleviate mottle [21] in
ink-jet printing. Other possible applications are numer-
ous. For example, Darhuber et. al. discussed the use of
patterned surface as printing plates [4] and Kusumaat-
maja et. al. showed how chemical patterning can be used
to control drop size and polydispersity [22].

3.1. Spreading on a chemically striped surface.
Figure 1(a) shows experimental results for ink drops jet-
ted onto a surface patterned with relatively hydrophilic
and hydrophobic stripes with contact angles 5o and 64o

and widths 26 µm and 47 µm respectively. The drop vol-
ume was chosen such that the final drop radius was the
same order as that of the stripes. Note that there are two
distinct final drop shapes, which we shall denote butterfly
and diamond.

To understand the final drop shape we ran simula-
tions matching the surface tension, viscosity, contact an-
gles, stripe widths, impact velocities and drop volume to
the experimental system. Simulation and physical param-

eters are related by choosing a length scale Lo, a time
scale To, and a mass scale Mo appropriately [23,24]. A
simulation parameter with dimensions [L]n1[T ]n2[M ]n3 is
multiplied by Ln1

o Tn2
o Mn3

o to give the physical value.
The results are shown in Fig. 1(b). The faint lines

show the time evolution of the (base of) the drop and
the solid lines its final shape. As in the experiments both
the butterfly and diamond drops are seen. The simula-
tions enabled us to show that this occurs because the fi-
nal drop shape is selected by the initial impact position
and velocity. If the drop can reach two neighbouring hy-
drophilic stripes as it spreads it will reach the butterfly
configuration, if not it will retract back to the diamond
pattern spanning a single stripe. Both states are free en-
ergy minima but one is a metastable minimum: which one
is sensitive to the exact choice of the physical parameters.

3.2. Dynamics on a chemically striped surface. In
Fig. 2 we present simulation results showing how a drop
moves across a similar, chemically striped, surface when
pushed by a constant body force (such as gravity). The
contact angles of the stripes are now 60o (dark grey) and
110o (light grey). The drop shape changes from a diamond
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Fig. 3. Control of drop position using chemical patterning. (a) Time evolution of drops jetted onto substrates patterned by
grids. Relatively hydrophobic and hydrophilic areas are light grey stripes (65o and dark grey areas (5o) respectively. (b) Inkjet
drops were jetted onto a substrate and cured: (top) homogeneous and (bottom) patterned. The figures are taken after Ref. 24

to a butterfly shape and back again (Fig. 2(a-d)). Let us
assume the drop is initially in a diamond configuration
(Fig. 2(d)). Due to the Poiseuille flow field, the drop is
pushed forward onto the hydrophobic region. Its velocity
decreases because of the dewetting force at the hydropho-
bic stripe. If the external body force is small, the drop
velocity will fall to zero, the drop will be pinned, and the
steady-state drop shape will look similar to Fig. 2(a). For
the parameters we consider here, however, the drop is just
able to channel to the next hydrophilic stripe. The effec-
tive capillary force at the chemical border then starts to
take charge and the drop accelerates and wets the next
hydrophilic stripe. The drop now has a butterfly shape
(Fig. 2(b)), which here corresponds to the peak of an en-
ergy barrier between two diamond shapes on successive
hydrophilic stripes. It then becomes more advantageous
for the drop to spread along the new hydrophilic stripe
in the direction perpendicular to the force rather than to
continue to move along the substrate. Hence, the diamond
configuration is re-formed and the oscillations repeat.

3.3. Using chemical patterning to control drop po-
sitioning. In a printed image a patch of colour is pro-
duced by jetting drops in a regular, square array. The
closer the drops the more intense the colour of the patch
appears to the eye. To achieve a solid colour the aim is
that drops jetted at a distance apart comparable to their
diameter should coalesce and form a uniform covering of
ink. However, in practice, randomness in the positions at
which the drops land, combined with surface imperfec-
tions, often lead to local coalescence and the formation of
large, irregular drops with areas of bare substrate between
them as shown in the upper part of Fig. 3(b). Such con-
figurations are likely to lead to poor image quality, called
mottle [21].

Figure 3(a) shows how this problem can be over-
come by using a grid of (relatively) hydrophobic chemical

stripes to control the equilibrium shape, the position, and
the dynamic pathway of spreading drops thus allowing
their relative positions to be tuned.

The drop has an initial radius of 15 µm and the sub-
strate has contact angle 5o. The hydrophobic grid has
stripes of width 6 µm, separated by 66 µm, and contact
angle 65o. The simulation shows that the drop is confined
even when its initial point of impact is close to the corner
of a square.

An experiment presenting a similar situation is shown
in Fig. 3(b). The ink drops have a radius R = 30 µm and
they are jetted in a 50 µm × 50 µm array. In the upper
part of the figure there is no hydrophobic grid and a mot-
tled final configuration is observed. The lower part of Fig.
3(b) carries hydrophobic stripes of 5 µm width forming
squares of side 40 µm. The drops now form a more regu-
lar array determined by the grid. (We note that each drop
covers four grid squares, as the drop radius to square side
length ratio is larger than in the simulations.)

4. Superhydrophobic surfaces
4.1. Introduction. We now consider surfaces that are
patterned with an array of posts as shown in Fig. 4(b)
and (c). When the surfaces are intrinsically hydropho-
bic, that is the flat surface contact angle is larger than
90o, the macroscopic contact angle of a drop on the pat-
terned substrate increases to, in certain cases, close to
180o [6–9] . On such superhydrophobic surfaces drops can
either lie in a suspended state on top of the posts or a
collapsed state filling the interstices between them. In the
suspended state the (averaged) macroscopic contact angle
is given by the Cassie-Baxter equation [25]

cos θCB = f cos θe − (1 − f) (6)

where f is the solid (area) fraction of the substrate and θe

is the equilibrium contact angle of the flat surface. Essen-
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tially the Cassie-Baxter equation averages over the cosines
of the contact angles of the posts (θe) and the space be-
tween them (180o). In the collapsed state the correspond-
ing formula is due to Wenzel [26]:

cos θW = r cos θe (7)

where r is a roughness factor, the area by which the liquid-
solid contact area is increased by the presence of the posts.
These formulae correspond to minimising the free energy
of the drop under the assumption that the drop covers a
large number of posts.

Fig. 4. Final states of a spreading drop. (a) The substrate is flat
and homogeneous. (b) The substrate is decorated with posts
and the drop is in the suspended state. (c) Same geometry as
(b) but the drop is in the collapsed state. The figures are taken

after Ref. 20

Fig. 4 shows simulation results for the final state of a
drop of radius R = 30 spreading on a smooth (Fig. 4(a))
and a superhydrophobic surface (Fig. 4(b) and (c)). A
contact angle θe = 110o is set on every surface site. The
resultant macroscopic contact angles in the simulations
are 110o, 156o and 130o for the flat surface, suspended
drop and collapsed drop respectively. The values for the
suspended and collapsed drop are compatible with the
ones obtain from the Cassie-Baxter and Wenzel formulae,
but are not exactly the same. There are two reasons why
this occurs. First, the drop only covers a finite (and small)
number of posts in the simulations. Second, the surface in-
homogeneities result in the existence of multiple local free
energy minima, not just that prescribed by the Cassie-
Baxter or Wenzel formulae. This can cause pinning of the
contact line and lead to values of contact angles which de-
pend not only on the thermodynamic variables describing
the state of the drop, but also on the path by which that
state was achieved. This phenomenon is known as contact
angle hysteresis [6,27–33].

4.2. Transition between the Wenzel and Cassie-
Baxter states. Both the collapsed and suspended su-
perhydrophobic states can be thermodynamically stable
with the phase boundary between them depending on the
intrinsic contact angle and substrate geometry [34]. How-
ever, the suspended drop is often observed as a metastable
state. As the drop penetrates the grooves, the area of con-
tact between liquid and solid increases. Because the sub-
strate is hydrophobic, this creates a free energy barrier
hindering the transition. Work must be provided, by an
impact velocity or gravity say, to allow it to proceed.

Our simulation allows us to follow the transition path-
way. We consider a spherical drop of radius R = 30 ini-
tially just touching the top of the posts. A gravitational
field is turned on at time t = 70000, and turned off at
time t = 200000. Figure 5 shows cross sections of the
drop as it undergoes the transition from the suspended to
the collapsed state.

The drop first touches the susbtrate at its centre. Once
this has occured the free energy barrier is overcome and
it is favourable for the drop to quickly wet the rest of the
surface as it is replacing two interfaces, solid-gas-liquid by
a simple solid-liquid interface. Recent experiments have
shown that reducing the size of a drop can also lead to
a lowering of the free energy barrier and can induce a
transition from the suspended to collapsed state [35].

4.3. Dynamics on superhydrophobic surfaces. Fi-
nally we comment on the way in which drops move across
superhydrophobic surfaces. We have performed simula-
tions [36] on drops pushed across superhydrophobic sur-
faces by a Poiseuille flow field. We found that, for drops
suspended on the surfaces, there was an increase in ve-
locity of about 50% as the number of posts is decreased
to zero. We further showed that the main contribution to
this effect is from the position of the drop in the Poiseuille
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flow field. As the number of posts is decreased the con-
tact angle increases and hence the drop lies, on average,
further from the surface. Thus it is subjected to a higher
velocity field and moves more quickly.

For collapsed drops the situation was very different.
Here, as posts were introduced, they impeded the drop
and its velocity fell. For a large number of posts, as the
drop was pushed, it preferred to revert to the suspended
state.

This is consistent with the results in the literature that
a drag reduction ∼ 40% can be obtained for drops on sur-
faces with micron-scale posts [37–41]. However, it does not
explain the apparent ease with which a drop placed on a
superhydrophobic surface starts to move. Further experi-

mental and numerical investigations are needed to explore
drop dynamics on superhydrophobic surfaces.

5. Conclusions
We have presented a mesoscopic model that allows us to
study the statics and dynamics of drops spreading and
moving across patterned surfaces. In the model interfaces
appear naturally and there is no need for interface track-
ing. This makes it a powerful tool to study the behaviour
of evolving drops, espcially when the surface geometry is
complicated, as shown in the cases considered in this pa-
per. Furthermore, the wetting properties of the liquid can
be easily implemented as a boundary condition on the
fluid density.

Fig. 5. Transition from a suspended to a collapsed state. These cuts are vertical cross sections across the centre of the domain
where the dark grey areas are the posts and pale grey represents liquid regions.The figures are taken after Ref. 20
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However, the model we solve does include approxima-
tions to make it numerically tractable and it is important
to be aware of these. The model presented here is limited
to isothermal systems. Moreover the contact line moves
too quickly. This is because, as with all mesoscale, two-
phase fluid simulations, the interface is too wide so that it
can be resolved on the computational grid. Moreover the
liquid-gas density ratio is limited to < 5 to avoid instabili-
ties. The effect of this is that, given a set of input physical
parameters, the simulation drop moves more quickly than
a real drop. This can be accounted for by rescaling time
by a constant factor. Simulation and experimental data
then agree well in all the cases we have considered so far.

Other authors have used lattice Boltzmann algorithms
to solve related models investigating the movement of liq-
uids across patterned surfaces. The main difference with
the approach described here is in the details of the thermo-
dynamics. For example, Zhang and Kwok [42] replaced the
square gradient interaction by a non local term and used
an exponentially decaying potential (with length scale ∼
one lattice spacing) to mimic the fluid–wall interaction.
Benzi et. al [18] started from a chosen form of the inter-
particle interaction.

The directions for future research are numerous. We
are currently studying hysteresis on patterned surfaces.
This turns out to be a very complicated problem with the
contact angle hysteresis depending sensitively on the de-
tails of the surface patterning and the direction in which
the interface is trying to move. One pertinent question
is whether it is possible to define a sensible limit which
would correspond to microscopic and random disorder on
the substrate.

Recent careful experiments [43] have probed the
changes in shape of a drop rolling down as inclined plane
as a function of capillary number. They found that the
drop developed a corner in its trailing edge and then, as
the capillary number increased further, left behind a trail
of small drops. We should like to investigate the extent
to which the simulations can give quantitative agreement
with these results.

The internal fluid motion of the drop is also of great
interest: liquid drops can slip, slide and roll on a surface
[44] depending on the parameters of the system. Apart
from the fundamental interest in understanding what de-
termines the motion, this is also important from a prac-
tical point of view. Recently, several authors (e.g. [45])
have suggested the use of droplets as microreactors in mi-
crofluidic devices. Since the objective here is to obtain
rapid mixing, the internal fluid motion is very relevant.

We have here just considered superhydrophobic sur-
faces fabricated from arrays of posts. Disordered surface
layers of hydrophobic grains also show superhydropho-
bic behaviour. Moreover plants often control their wet-
ting properties with surface inhomogeneities at two length
scales or with hairy surfaces. We are in the early stages
of understanding the equilibrium properties, phase tran-
sition and hydrodynamics of drops on these substrates.

We would also like to note that the approach presented
here is not limited to the study of drop motion. It can
immediately be applied to study many multiphase prob-
lems, such as the dewetting of thin liquid films or flow in
porous media. One can also extend the model to achieve
higher density ratio [47], incorporate thermal transport,
or introduce colloidal particles inside the drops [48]. The
latter will allow investigation of a new set of problems,
from liquid marbles [46] to the self assembly of colloidal
particles [49].
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