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Self-diffusion effects in micro scale liquids. Numerical study
by a dissipative particle dynamics method
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Abstract. Mesoscale flows of liquid are of great importance for various nano- and biotechnology applications. Continuum model
do not properly capture the physical phenomena related to the diffusion effects, such as Brownian motion. Molecular approach
on the other hand, is computationally too expensive to provide information relevant for engineering applications. Hence, the
need for a mesoscale approach is apparent. In recent years many mesoscale models have been developed, particularly to study
flows of gas. However, mesoscale behaviour of liquid substantially differs from that of gas. This paper presents a numerical study
of micro-liquids phenomena by a Voronoi Dissipative Particle Dynamics method. The method has its origin from the material
science field and is one of very few numerical techniques which can describe correctly molecular diffusion processes in mesoscale
liquids. This paper proves that correct prediction of molecular diffusion effects plays predominant role on the correct prediction
of behaviour of immersed structures in the mesoscopic flow.
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1. Introduction

Reynolds number defines the characteristic of the fluid
flow for the continuum medium. If the compressibility of
the gas was neglected, then gas and liquid can be treated
in similar way. However, from the molecular point of view,
the two fluids behave very differently. The average dis-
tance between gas molecules is at least one order of mag-
nitude higher than in liquids. The interaction in gases is
mostly defined by bilateral collisions. In contrary, liquid
molecules are tightly packed and they interact by inter-
molecular potential causing cohesion of liquids. Hence, the
differences between behaviour of liquids and gasses will
appear in mesoscale and this leads to requirement for a
different theoretical and numerical treatments of the two
media. In the last few years, the research interest had
been mostly focused on modelling of micro-flow of gases.
Some examples are presented in [1] and [2]. However, the
increasing interest in understanding of bio-processes and
the development of bioengineering requires more compre-
hensive study of mesoscale behaviour of liquids. Hence,
the present paper will focus on a new numerical develop-
ment applicable to liquids.

The question that naturally arises first would be the
definition of mesoscale. For gases Knudsen number, based
on the molecular mean free path, helps to define bound-
aries. Cohesion of liquids, however, makes a counterpart
parameter difficult to define. Solids, similarly to liquids,
are also characterized by cohesion. Molecules in solids re-
main localized in the vicinity of the equilibrium lattice
position (rigidity of solids), and will very rarely jump be-
tween neighbours. In liquids molecules will drift apart.

Einstein relation describes the mean square displacement
at time t of the molecule from the initial point in time
t = 0

< |x(t) − x(0)|2 >= 6 D t, (1)

where D – is self-diffusion parameter. Molecular diffusion
is the consequence of the thermal fluctuation and a prop-
erty of irreversibility. In contrary to viscous flow, molec-
ular diffusion appear spontaneously without presence of
external forces, and for liquid, it is typically of the or-
der of D ∼ 10−9m2/s. The difference between solids and
liquids, which manifests itself in the molecular drift pro-
cesses, helps estimate one border of the mesoscale descrip-
tion. Due to the fact that molecular diffusion is not limited
by any space or time restriction, this property will define
the upper-bond of the mesoscale. Thermal fluctuations ef-
fects (Brownian motion) are prominent on the scale of the
order of micro- and nano-meters. However, on the larger
scale and for very long time, the process can be averaged
and neglected.

The lower limit of the mesoscale can be derived from
the differences between gas and liquid at the molecular
level. The radial distribution function g(r) is a quantita-
tive measure of molecular order. It provides the informa-
tion about the local density ρ(r) of molecules around a
given molecule. Figure 1 shows radial distribution func-
tion for a gas and a liquid. Gas molecules are sparse
and bilateral collisions determined transport processes be-
tween them. However, liquids on the molecular level are
very different. The radial distribution function has several
local maxima. This means that behaviour of the single
molecule is influenced by the closer and also by the rela-

∗e-mail: jczer@ippt.gov.pl

159



J. Czerwińska

tively distant neighbours. The size of the molecules as well
as the strength of the interaction will be limiting factor
of various liquid behaviour. Several maxima in radial dis-
tribution function can explain the self-organization and
clustering mechanism, which occur on the order of nano-
meter scale, as illustrated in [3]. By changing the size
of liquid molecules (polymers, complex molecules in [4])
and the strength of interaction (electro-magnetic field in
[5]) molecular effects beyond the nano-meter scale have to
be consider. Non-Newtonian behaviour of some liquids is
one of the effect connected with the intermolecular scale
length. For most common liquids the changes in these
effects start to be noticeable on the order of few nano-
meters and on the larger scale inter particle interactions
phenomena in liquids are similar to the continuum de-
scription. Hence, the intermolecular interaction provides
guidelines for the definition of the lower bound of the
mesoscale.

Fig. 1. Sketch of typical radial distribution function g(r) for
a gas and a liquid; σ is the size of the molecule. In liquids
molecules are tightly packed. Hence, the presence of several

local maxima in the radial distribution function

Concluding, cohesion and molecular drift in liquids
allow the definition of limits on the scale, which later
herein will be referred to as a mesoscale. Molecular de-
scription (microscale) is limited by the relevance of the
time and space scales related to the changes in the inter
particle potential effects. This describes lower bound of
the mesoscale. The continuum approach (macroscale) has
its lower bound limited by the influence of the thermal
fluctuation phenomena and it provides upper limit of the
mesoscale. Various phenomena important for the bio- and
nanotechnology are taking place in such defined mesoscale
regime. Examples in [6–8]. Due to that fact there is a need
for efficient and accurate simulation techniques which will
enhance understanding of mesoscale processes in liquids
as well as provide help in designing micro-devices.

2. Fundamental physics of the mesoscale
liquids

The borders of the mesoscale have been defined in in-
troduction section. The lower bound of the scale is es-

tablished by short range changes in intermolecular force
interaction. However, the interaction is very complex in
nature and can represent itself in various ways. Neglecting
the possible electromagnetic effects the following phenom-
ena are related to the intermolecular potential:

1) interaction between the same fluid molecules – viscous
effects;

2) interaction between molecules of different fluids – im-
miscibility, surface tension;

3) interaction between fluid and solid molecules – slip or
no-slip phenomena;

4) interaction between two fluids and solid molecules –
wetting phenomena.

Fig. 2. Diagram represents comparison of important time and
space scales for liquids. The lines indicate that the consid-
ered phenomenon is time dependent on the scale of the order
of femto-seconds, therefore time influence can be neglected;
points refer to the specific time and space occurrence of the
phenomenon. Indexes on figure represent as follow: 1) Molecu-
lar Dynamics study of changes in the surface tension due to the
thermal fluctuations (0.9 nm) in [9]; 2) Molecular Dynamics
slip effects in binary mixtures (∼ 2 interaction lengths, 2 nm)
in [10]; 3) Molecular Dynamics study of the effect of the rough-
ness of the surface on the viscosity of the film (3.89 nm) in [11];
4) Molecular Dynamics study of the effect of the length of the
molecule on the slip (7.9 nm) in [11]; 5) Molecular Dynam-
ics study of the solid-fluid interface boundary condition (up
to 10nm) in [12]; 6) Charged colloidal suspension nucleation,
self organized structures (320 nm) in [13]; 7) DNA fluctuations
(DNA length - 10µm) in [14]; 8) Ecoli RNA fluctuations in [15];
9) Colloidal hard spheres suspension in [16]; 10) DNA fluctu-
ations (DNA length - 0.1µm) in [17]; 11) Brownian particles
in polymer solutions in [18]; 12) Brownian motion of yeast cell

walls in [19]

Figure 2 shows experimental and numerical data for
various effects in the mesoscale liquids. The phenomena
related to the intermolecular forces are generally not time
dependant (if time scale is larger than femto-seconds),
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therefore are marked as a straight lines. The intermolec-
ular processes have to be described by microscale (atom-
istic) models in the range of several nano-meters. Larger
scales do not require such modelling and continuum ap-
proach is sufficient. The second type of phenomena related
to molecular drift will, however, show their strength de-
pending on the time and space scale of the problem con-
sidered. For complex fluidics such as polymers or colloids
it can be noticeable up to few millimetres. Figure 2 shows
the molecular diffusion effects by dots. Majority of effects
will appear as a Brownian motion of immersed structures
in the flow. It can be noted that some of the data (7–10,12)
are correlated as straight line, with the slope being of the
value of the order of the water diffusion coefficient. Point
(11) consider complex polymer colloids. Hence, molecular
diffusion coefficient differs.

In summary, Fig. 2 provides the guideline in deciding
the modelling approach for mesoscale liquids. If the flow
phenomena were of the scale larger than several nano-
meters, molecular potential interaction is well described
by continuum equations. Molecular drift effects however
are significant and present on the larger scales. Some phe-
nomena such as Brownian motion or molecular mixing are
examples of molecular drift related effects and can show
the influence on various space and time scales. Thus, the
time scale difference in which the intermolecular forces
and self-diffusion phenomena achieve equilibrium state
defines the upper border of the mesoscale. The Schmidt
number

Sc =
ν

D
(2)

represents relation of viscous effects (ν -viscosity of fluid)
to the mass transfer effects (D self-diffusion). Large Sc
(typically for water ∼ 1000) indicate that the equilibrium
state related to the viscous effects is obtained much faster
than the one corresponding to the molecular drift pro-
cesses. Another way to estimate space and time relation
limiting mesoscale physical effects is to define quantity
similar to the Mach number

M =
s/t

a
, (3)

where a is speed of sound and instead of the flow velocity
the space s and time t relation of considered problem is
present. The speed of sound defines the speed of propa-
gation of small disturbances in the medium. This can be
related on more fundamental atomic level to the fluctua-
tions, example in [20]. Hence if the space and time relation
for a considered problem leads to M ∼ 1, small distur-
bances effects will influence the flow. As it can be noted
in the characteristic space/time relation from equation 1
and from equation 3 for water are of the similar order
(7.7 ·10−5 −8.3 ·10−4m/s). Thus, for some circumstances
such define Mach number maybe easier to estimate than
local Schmidt number.

Molecular diffusion will be the predominate factor dif-
ferentiating meso- and macroscale. Hence, the numeri-

cal approach to model mesoscale liquids has to describe
molecular diffusion processes correctly.

3. Numerical methods and coarse
graining procedure

Mesoscale numerical modelling of liquids requires differ-
ent approach from the continuum or molecular simula-
tions. Continuum models do not take to account fun-
damental phenomenon relevant on such scales such as
random molecular drift. Molecular simulation, example
Molecular Dynamics in [21], conceptually also have sev-
eral other limitations. The first of which lies in the re-
liance of computational part. With the fastest comput-
ers to date, the number of liquid molecules reach about
10−14 of Avogadro number. Hence, Molecular Dynamics
describes very small volume of liquid. The second limita-
tion, as indicated by [22], rest on the molecular diffusion
process itself and the question, if they can be correctly
represented by Molecular Dynamics. Thus, restrictions in-
dicate that more visible approach is to perform some types
of coarse graining procedure. This can be achieved in sev-
eral ways. The most common of which increase the time
and space scales by simplification of interaction properties
- Lattice Boltzmann Method in [23]. Generally molecular
diffusion effects are neglected, however some variations
of the Lattice Boltzmann Method allow fluctuation part,
example in [24]. Due to the fact, that the motion is re-
stricted to the rigidity lattice certain difficulties arise such
as Galilean invariance problem. An alternative approach
to coarse graining procedure is to treat the particle as a
mesocopic object interacting with prescribed interaction
- Dissipative Particle Dynamics. The degrees of freedom,
which are lost during the coarse graining process, are com-
pensated by a respective random forces. This approach
will be presented here and will be described in more de-
tails in the next section.

4. Dissipative Particle Dynamics
formulation

The Dissipative Particle Dynamics was originally pro-
posed by Hoogerbrugge and Koelman [25] as a combina-
tion of Lattice Gas Simulation and Brownian Dynamics.
The method is based on the modification of Molecular Dy-
namics potential (Lennard-Jones type) from hard spheres
to the soft repulsion. This alternation allowed to make
larger time steps possible. However, the removal of the
hard core has lead to the drawbacks in modelling vis-
cous effects in fluids. The hard core is responsible for the
caging effect. It means that a particle encounters many
collisions before it is transported (similarly like in real
fluids). The soft repulsion increases significantly (about
1000 times in [27]) mobility of the particles. The Schmidt
number is Sc ∼1. This implies that viscous time scale
is comparable with the diffusion time scale. Thus, the
method is very inefficient for viscous flows and simulations
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require averaging over significant number of time steps,
example in [28] and [29]. Lowe [30] proposed modifica-
tion, which allows flow field modelling more efficiently, by
using Maxwellian distribution to strictly control temper-
ature and velocity is sampled by Andersen Monte Carlo
thermostat. This leads to significantly higher viscosity
of fluids, hence any Schmidt number can be simulated.
However, the low viscosity case becomes difficult to ob-
tain using this method. Another drawback of the classical
Dissipative Particle Dynamics formulation is that it does
not include energy equation, thus certain processes can-
not be properly modelled. Bonet Avalos and Mackie [31]
proposed altered Dissipative Particle Dynamics with en-
ergy conservation, however the same problem consider-
ing Schmidt number is present and in this case velocity
sampling termostat cannot be used. Several other limit-
ing factors of classical Dissipative Particle Dynamics need
to be mentioned. A small Schmidt number indicates that
the speed of the propagation of the small disturbances is
invalid (speed of sound is much lower). This will manifest
itself in the high speed flows, where the shock wave oc-
curs for much lower speeds than in real fluids, but also,
it is very important for micro-fluidics. The amplitude of
Brownian motion will be much larger that the one of the
real fluids. Consequently, the average of the flows with
immersed structures are not properly captured. Moreover,
the time scale of the Brownian motion for non-equilibrium
effects will be incorrect. As it was mentioned earlier, these
very phenomena are of the great interest for micro-fluidics
applications. Next inconvenience is related to the fact that
all dissipative particles are of the same size. The simula-
tion of the effects which require various length scales are
restricted by the smallest scale. Hence, this may lead to
very large number of particles. Finally another inconve-
nience is connected with the implementation of bound-
ary condition. The soft potential allows penetration of a
boundary. The introduction of the frozen layer of parti-
cles helps in establishing the no-slip wall boundary condi-
tion, however it causes clustering of the particles near the
boundary. This represents itself as a large density fluctu-
ations in the vicinity of the wall (of the order of the value
itself in [28]).

The alternative approach to model fluid is to describe
a set of volume particles. The origin of this approach is in
the Lagrangian solvers for visco-elastic fluids proposed by
[32]. Moving Voronoi mesh describes fluid flow based on
the Navier-Stokes equations. This approach is sufficient,
as it was mentioned earlier, to represent all the intermolec-
ular related processes (such as viscosity, thermal conduc-
tivity). However, molecular drift effects are not taken into
account. Hence, additionally fluctuating term has been
added to ensure a correct value of the molecular diffusion
coefficient. Such formulation has various advantages. For
example it ensures that the Schmidt number is similar to
that of the real fluids. Moreover, the wall boundary condi-
tion can be modelled correctly. There is no density jump
on the wall.

Fig. 3. Voronoi cell i and the quantities defining the discreti-
sation algorithm; Aij - length of the edge i j; Rij – distance
between two particles centres; τij – vector defining changes
between mass centre of particles i j and the edge centre; ωij –
normalized vector indicating relative movement of the centres

of the particles i j; Vi – volume of the particle

Several ways of the derivation of the equations can be
found: bottom-up approach in [33] and [34] and top-down
derivation in [35,36].

4.1. Basic description – continuum terms. The dis-
sipative particle will be defined as a Voronoi cell. Conse-
quently, space can be divided completely into conjuncted
cells. The density of the particle, in contrary to classi-
cal Dissipative Particle Dynamics, will be associated with
particle volume and can be defined as

ρi ≡
1
Vi

∫
Vt

dr ρ(r), (4)

where particle volume is given by relation

Vi ≡
∫

Vt

dr. (5)

To discretise a continuum equation into the Voronoi cell
some additional assumptions are needed.

The average of any variable Q is:

[Q]i ≡
1
Vi

∫
Vt

drQ(r). (6)

Following above approximation gradient of variable can
be written as

[∇Q]i =
1
Vi

∑
j

Ωij [Q]j , (7)

where vector Ωij is related to the inter particle mass cen-
tre rotation and is given by equation

Ωij ≡ 1
2
Aij ωij . (8)
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Fig. 4. Channel flow. Time evolution of velocity profile; stars –
4000 time step, crosses – 8000 time steps, circles – 15000, 30000
time steps, straight line – parabola −1.81 ·109(x−5 ·10−9)(x−
8.95 · 10−9). The axes correspond: x-coordinate corresponding

to channel width in [m], y-velocity in [m/s]

The Aij is the length of the edge between particles i and
j, and

ωij =
Rij

Aij
, (9)

is related to the relative movement of the Voronoi centres.
For any polygon it can be seen that∑

j

Aij ωij = 0. (10)

Second operator needed for discretisation of continuum
equations is convection term

∂Q

∂t
= −∇Qv. (11)

This can be approximated from the Eulerian dynamics
approach (discrete Gaussian theorem)

d(Vi[Q]i)
dt

= −
∑

j

Ωij [Qv]j , (12)

or Lagrangian if
ṙi = [v]i, (13)

then it can be proven that

d(Vi[Q]i)
dt

=
∑

j

Γij [Q]ij , (14)

where
[Q]ij =

1
2
([Q]i + [Q]j), (15)

and
Γij =

Aij

Rij
τij ([v]i − [v]j). (16)

Following above definition the continuum equations can
be discretise as follow.

Conservation of mass
∂ρ

∂t
= −∇ρv (17)

only requires the convection operator and can be written
as

dMi

dt
=

d(Vi[ρ]i)
dt

=
∑

j

Γij [ρ]ij (18)

The momentum equation in discretised form looks as fol-
low

dPi

dt
=

d(Vi[ρv]i)
dt

=
∑

j

Γij [ρvij ]

−
∑

j

Ωij([p]j + Πj + trΠj 1),
(19)

where Π is symmetric part and trΠ is trace of the stress
tensor. The entropy equation is as follows

dSi

dt
=

∑
j

Γij [s]ij +
1
Ti

∑
j

Ωij [Jq]j

+
2ηi

TiVi
Gi : Gi +

ζi

TiVi
D2

i ,

(20)

where G is traceless velocity gradient tensor, D – is the
divergence of velocity, η – shear viscosity, ζ – bulk viscos-
ity.

To complete a description the fluctuation part needs
to be added. Öttinger [37] proposed the way to add fluctu-
ation in the thermodynamically consistent way. This leads
to the following equations for the momentum part:

dPr
i =

∑
j

Ωij ·
(

4 kB Tj ηj

Vj

)1/2

dWj

+
∑

j

Ωij ·
1
2

(
4 kB Tj ξj

Vj

)1/2

tr[dWj ],

(21)

and for the entropy

dSr
i =

1
Ti

∑
j

Ωij · Tj

(
2kBκj

Vj

)1/2

dUj

− 1
Ti

((
4kBTiηi

Vi

)1/2

dWi +
1
2

(
4kBTiξi

Vi

)1/2

tr[dWj ]

)
:
∑

j

ΩjivT
j ,

(22)
where is U is independent Wiener vector and matrix

dWj =
1
2

(
dWj + dWT

j

)
− 1

2
tr[dWj ]1, (23)

is a matrix of independent Wiener processes.

5. Mesoscale physics in simulations
The mesoscale physics described previously needs to be
correctly resolved in a numerical simulation. Hence, sev-
eral issues have to be considered. Firstly, the effects re-
lated to the intermolecular potential should be resolved
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properly. As it was noted above for the space scale larger
than 10 nm the continuum approach for such effects is
sufficient and consistent with experiments. Therefore, as
a validation the simulation for the Poiseuille flow was per-
formed. For all calculations, the chosen liquid was water.
To estimate the parameters of the liquid such as a mass
of one particle the assumption was made that the dis-
tance of the molecules of water in 2-D dissipative particle
is the same as in the normal conditions in 3-D volume.
From that specific number of molecules was calculated.
The channel size was 1500 nm length and 900 nm width.
The single dissipative particle here is of the order of 10 nm
and the total number of dissipative particles is 10800. As
it can be seen from Fig. 4 the velocity corresponds to that
one of the continuum prediction. It should be emphasized
that all particles in the flow are shown as the presentation
is not a cross-section or result of an averaging procedure.
The particles aligned with the flow one behind another,
therefore all cross-sections would look identical. The den-
sity and entropy, are not plotted, but for this case there
are straight lines with the same constant value and there
is no jump in the vicinity of the wall boundaries. The main
conclusion for this first test is that the continuum scale is
resolved correctly even in the range of nano-meters. How-
ever, this computations did not involve fluctuation term,
which as was indicated earlier is important for mesoscale
liquids.

The influence of the fluctuations on the channel flow
can be seen in Fig. 5a. The plot represents velocity in
the y-direction. The line in the middle refers to the con-
tinuum flow for which fluctuation is not included. All re-
maining points correspond to the same channel flow with
fluctuations. For this case fluctuations in y-velocity are
three orders of magnitude smaller than the velocity in x-
direction. Hence, the general velocity profile will not be
affected by fluctuations. However, for smaller flow veloc-
ities this tendency will change. Second part of the Fig.
5 shows the difference in y-velocity fluctuations for three
different channel geometries. First one is as the one above,
second is 10 times larger in each direction – 1.5 µm × 0.9
µm and the third is 15 µm × 9 µm. As it was expected
Brownian motion of the particles depends on the mass and
heavier particles will have smaller fluctuations. Another
conclusion from the figure is that the centre of the channel
seems to be affected less by fluctuations than regions near
the boundary. This is due to the flow reinforcement and
actually will have the influence on the immersed struc-
tures behaviour, which will be discussed in details later.

Figure 5 confirms the fact that the Brownian particles
(example dissipative particle form computations) move
slower when they are heavier. However, the mean velocity
of the drift should stay the same. This is due to the fact
that the mean displacement defines self-diffusion coeffi-
cient. To estimate the self-diffusion coefficient of the parti-
cles another test was performed. Equations 21 and 22 pro-
vide information about fluctuation. However, the precise
value of the term is estimated based on the fluctuation-

dissipation theorem. In macroscopic description it usually
presents itself as a relation connecting fluctuating terms
with dissipative part. Equation 1 can be considered as a
one of the very simple example. It connects random fluc-
tuations with the macroscopic parameter of self-diffusion
coefficient. Another example of fluctuation-dissipation re-
lation is

D =
kBT

6πηR
, (24)

Fig. 5. Channel flow with fluctuations; a) Velocity in y-
direction in the function of y-coordinate, middle line corre-
sponds to flow without fluctuations, the dots are representing
the same case with fluctuating term; b) Velocity in y-direction
in the function of y-coordinate (normalized to the channel
width). The middle line represents the largest channel, 15 µm
× 9 µm, light points – 1.5 µm × 0.9 µm, black dots – 1200 nm

× 900 nm

which relates random motion to the viscous effects. The
Dissipative Particle Dynamics formulation have different
fluctuation-dissipation theorem (details are in [34,35]),
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which ensures momentum and energy conservation. How-
ever, the fluctuation-dissipation theorem also provides
several other physically significant points. From the mi-
croscopic point of view fluctuation will be present in
the system in thermodynamical equilibrium. Onsager has
proven that the system response to the external perturba-
tion is correlated with the equilibrium fluctuations. The
diffusion coefficient obtained from studying the equilib-
rium correlations is the same as the one in continuum
models for time scale sufficiently longer than relaxation
time. Hence, the fluctuation-dissipation theorem will en-
sure that for long time scale the self-diffusion coefficient
is constant. Moreover, the speed of sound waves, as a re-
sponse of the system to the external perturbation, will
also be controlled by the fluctuation-dissipation theorem.
Thus, Eqs. 1 and 3 are indeed representing similar phe-
nomena connected to the response of the system to the
perturbation. This leads to the realization that correct
calculation of the speed of sound especially on the short
time scales is crucial for the micro-liquids. To ascertain
if the model presented here is correctly behaving in the
presence of disturbance, the following simulation is per-
formed. The box 10 µm × 10 µm with 1600 particles of
water was initially perturbed with small force and than
the behaviour of the mean particle drift was studied. Fig-
ure 6 presents the drift behaviour over time. As it was
expected in the liquid without fluctuations the diffusion
coefficient based on the particle drift is zero. This occurs
after time, when initial disturbance was dumped. The liq-
uid with fluctuations behaves differently. Firstly, the very
short time scale, shows that the motion of the particles
is uncorrelated and its initial rise corresponds to the one
which is obtained from the simple Langevin equation, ex-
ample in [20]. However, longer times lead to correlation
between particles and this shows in the plateau. For very
long time, however, the constant diffusion coefficient is
recovered. It has to be mentioned, that conservation of
the mass does not have the fluctuation term. The in-
fluence is indirect, through the momentum and entropy
equations. Hence, in general the self-diffusion effects can
be estimated correctly without mass exchange between
particles. In the simulations one of the curved represents
the behaviour, for particles when mass changes are not
allowed. In such a case the diffusion coefficient is larger
to compensate mass transfer effects. The diffusion coeffi-
cient can be calculated from 24 - 2.19 ·10−14m2/s and for
both cases is in the range of the theoretical prediction for
spherical particles (1.85 · 10−14 m2/s; 1.03 · 10−14 m2/s).
Hence, the diffusion processes for the small time scales are
represented correctly by fluctuation-dissipation theorem
and for the long time the value is ensured by continuum
approach.

Another aspect which should be considered is if the
time scale between diffusion and viscous process is re-
solved correctly. This will be especially important for
molecular mixing processes. However, as can be noted
from the Schmidt number definition 1, if viscosity and

self-diffusion coefficient are known and resolved correctly,
the time scale is then estimated correctly.

Fig. 6. Response of the liquid to the small perturbation. (a)
two cases, one in which the mass transfer between particles was
not allowed (higher curve) and second when the mass transfer
was present; (b) average mass changes between particles; (c)

the continuum equations without fluctuation term

Finally, after estimating the size of fluctuations and
the relevant time scale, the remaining question is then
to ascertain the importance of diffusion processes for
mesoscale liquids. From the channel flow above with ve-
locity Vx = 10−4 m/s and Reynolds number based on the
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channel length Re = 10−4 the size of fluctuation remains
fairly small. Hence, it seems that the fluctuations after all
might not be of primary importance for many engineer-
ing applications. The Reynolds number is usually much
larger and the one of the order of 10−7 would be difficult
to obtain. However, this is very misleading. The fluctua-
tion impact depends on the space/time scales relation and
the mass of the particle. One of the cases, which is very
interesting for bioengineering application is the manipu-
lation of DNA molecules. As it will be shown below for
such application self-diffusion effects will influence process
significantly.

Fig. 7. Channel flow with the DNA chain; a) x-Velocity in the
function of y-coordinate; all particles are plotted. Main flow
maintain parabolic profile far from the DNA; normalized mass

in the function of y-coordinate; all particles are plotted

5.1. Immersed structures in the flow and Brown-
ian effects. A case study to examine the influence of the
Brownian effects on the immersed structure is performed
by considering the channel flow with DNA chain. Most
of the experimental studies are concerned with stretching

of the DNA, as exemplified in [38–41]. However, here the
importance of the of the flow structures on the stretching
process will be underlined. Due to the fact that, the con-
sideration are restricted to the estimation of self-diffusion
effects in liquids, the simple model of DNA is sufficient
for such a case study. In general, DNA – fluid interaction
is modelled on the atomistic level and the mesoscale de-
scription is highly simplified and do not take to account
various important phenomena [42]. The mesoscale DNA
model presented here will be combination of the Dissipa-
tive Particle Dynamics and classical FENE approach, and
the way to obtain it is by similar patter as it is performed
in the Brownian Dynamics simulations, example in [43].

To model polymer the non-Hookean FENE spring
model was chosen. The force is obeying relation

FFENE =
HL

1 − (L/L0)2
, (25)

where H is spring constant. The spring cannot extend be-
yond L2

0 = 1.2 l2, l is the initial length. The mass centres
are associate with every Voronoi centre and the deforma-
tion follows similar rules as the one for dissipative particle.

The position of the each bead is calculated simi-
larly to the Ermak-McCammon algorithm differentiating
Langevin equation in high friction limit, where inertia
term are neglected. In our case inertia term will be result
of the DPD integration and will be implicitly influencing
behaviour of the polymer

ri = r0
i +

∆t

kT

∑
j

D0
ij · F0

j + v0
i · ∆t, i = 1, .., N. (26)

Generally the chain-solvent interaction is approximated
by the fluctuation part. However, the fluctuation term is
not explicitly present to affect deformation by the velocity
of the Dissipative Particle. Such formulation ensures that
diffusion effects influencing DNA are indeed the same as
modelled in liquid. The diffusion tensor for deformation
part is as presented

D(αβ)0
ii =

kT

ζ
δαβ , i = 1, .., N ;

D(αβ)0
ij = 0, i 6= j = 1, .., N ;

(27)

where viscous friction is related to fluid viscosity as

ζ = 6πη 0.257l. (28)

There is another assumption made in considering the
stretching mechanism. If the stretched length is much
longer than the maximum length, the DNA should break.
However, in the current simulation, the DNA will stay
in fixed position, when stretched to its material property
limit. The assumption was made to avoid considerations
regarding the material properties in the DNA stretch-
ing mechanism. There are several issues considering DNA
modelling, which require detailed studies that are beyond
scope of this paper.

To estimate Brownian motion effects following simu-
lations were performed. Channel flow 1.2 µm × 0.9 µm
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with 6300 particles and the DNA is constructed from the
87 of Voronoi particles. The Reynolds number based on
the channel length is 6 · 10−5. Accordingly to the Eq. 3
the fluctuations will affect time scales around 10−9 s. A
time step was chosen accordingly as 10−10 s, and the total
time was 4000 time step.

Fig. 8. Velocity distribution in the channel flow during the
DNA stretching procedure. The DNA is attached by fixing
the position of the first particle on the left end of the chain.
Top picture represents case without fluctuations. Bottom pic-
ture shows the same flow with the Brownian effects enhancing

the DNA stretching procedure

Figure 7 presents the example of x-velocity in the func-
tion of y-coordinate profile for all particles in the chan-
nel. It can be seen that parabolic profile is recovered in
the global channel, as well as in the flow between DNA.
The presence of the DNA influences the changes of the
mass of the particles 7, however the effect is connected
to the numerical error and more information about this
can be found in the appendix. Figure 8 shows the veloc-
ity field for two cases : top one is for without fluctua-
tions and the bottom, includes stochastic interaction. As
it can be noted, global velocity field is very similar, how-
ever there are significant differences in the vicinity of the
DNA chain. The main difference is for non-Brownian flow
the stretching is mostly performed in the direction of the
flow. The deformation is smaller, however the stretching
length is about the same as for the Brownian motion in-
fluenced DNA chain. The differences in the behaviour can
be seen even more clearly in Fig. 9. The first part presents

instantaneous resultant x-displacement for every bead of
the chain. As it can be seen, the Brownian effects increase
movement of the DNA significantly. The second part of
the figure presents the average displacement of the chain
in the flow in the function of time. The average displace-
ment should be a function of the mean flow velocity, hence
both curves have similar profile. However, there is signif-
icant difference in the behaviour of both cases. The plot
could be considered as a estimation of the diffusion con-
stant of the polymer. However, the flow is enforced and
the average displacement also is influenced by the flow
itself. Therefore, for the estimation of the diffusion coef-
ficient for this case the equation from [42] will be used.
The relation between diffusion coefficient of the monomer
particle Dm and polymer chain Dp is

Dp

Dm
=

1
N

+
Rm

Rp
, (29)

Fig. 9. The influence of the fluctuations on the DNA stretch-
ing procedure; a) the instantienous plot of the x-direction dis-
placement for the time 3 · 10−7s as a function of the particle
number in the chain; stars – correspond to the case without
fluctuations; circles – displacement with the fluctuations; b)
the time evolution of the mean displacement; red, dotted line

– flow without fluctuations, black – flow with fluctuations
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where N is the number of the bead, Rm the radius of the
monomer particle, Rp – radius of the polymer. This rela-
tion leads for the DNA case to ratio Dp/Dm = 0.048. This
again confirms the fact that heavier Brownian particles
is affected by smaller fluctuations. However the average
displacement still remains significant, as the DNA-liquid
interaction is reflected in the second part of the equation.
Hence, the liquid self-diffusion coefficient will have domi-
nating influence on the long polymer chains.

6. Conclusions
This paper presents a new modelling approach for simu-
lating mesoscale phenomena in liquids. As it was shown on
such a scale the self-diffusion related effects are predomi-
nant. Various important nano- and bioengineering appli-
cations need to resolve such phenomena, example molec-
ular mixing, manipulation of polymers or cells. However,
the understanding of following process is still in progress.
Experimental approach in some cases, do not provide
complete information. For example, on nano-meter scale,
there is difficulty in obtaining the information about the
flow field phenomena. Hence, a realistic numerical simula-
tion can provide crucial help in bridging the experimental
information gap. However, there are very few numerical
methods, which can efficiently cope with this task. Here,
the Voronoi Dissipative Particle Dynamics was presented
with a very satisfying result. The imposing of flux bound-
ary condition on the fluid-solid interface and Voronoi
adaptivity has significantly reduced density jump on the
boundaries, which is present in many particle methods
and which alters significantly flow structure.

Mesoscale phenomena are the resultants of two major
effects in liquids, namely the intermolecular potential and
random molecular drift. Both of these aspects help to de-
fine the mesoscale borders and also need to be resolved
correctly by any numerical approach. Voronoi Dissipative
Particle Dynamics, due to the fact that the Schmidt num-
ber is similar to that one of the real liquids, models the
processes accurately and in very efficient way. The pre-
sented method, due to the fact that the the time averag-
ing is not require to obtain the flow field is few order of
magnitude faster than other applications of DPD.

It was shown that self-diffusion effects can influence
flow in various ways. In some cases such as channel flow,
the fluctuations do not play an important role. However,
in the presence of any immersed structure the situations
change drastically. As a example the DNA chain stretch-
ing case was chosen. The fluctuation influence alters sig-
nificantly this procedure.

Appendix

Numerical procedure, accuracy
and efficiency.
There are several issues related to the numerical proce-
dure. First is related to the movement of the Voronoi

lattice. Voronoi diagram is a tool to describe proximity
of neighbouring points U = P1, ..., Pn. The perpendicular
bisector is defined as

Bij = {x ∈ <2 | d(x, Pi) = d(x, Pj) }, (A1)

where d(x, Pi) is the distance between any point x and
Voronoi center Pi. The Voronoi polygon of Pi is defined
as

V (Pi) = {x ∈ <2 | ∀i 6=j d(x, Pi) ≤ d(x, Pj) }. (A2)

Set of Voronoi points defines Voronoi diagram, dual graph
to the Delaunay triangulation. Due to the movement of
Voronoi centres the diagram requires reconstruction. Two
assumptions are important: first that points do not col-
lide and second that initial diagram is actually a Voronoi
diagram. In such a case there are three types of events.
The appearance (or disappearance) of additional Voronoi
point in the neighbouring vicinity of point Pi. If the point
Pi is on the wall, therefore does not move or is on the
periodic boundary, in such case the mirror image of point
Pi is created. Therefore the problem is confined to consid-
eration of movement of the Voronoi lattice on the torus.
It can be shown that the change in the Voronoi lattice is
characterized by topological diagram shown in Fig. 11.

Fig. 10. Deformation of particles in the channel flow (3500
particles)

Fig. 11. Topology changes in the four neighbouring Voronoi
cells (dotted line). Changes in Delaunay triangulation are also
presented. The flip procedure causes that two Voronoi are gain-
ing new neighbour and other two are loosing one neighbour.
The middle graph represents the degenerate case, which is the

topological state, but does not actually appear in practice

Hence, the updating of the diagram only requires re-
construction partially in the cells, which are influenced
by the changes. It can be proven that the algorithm effi-
ciency is O(n + F log n), where F is the number of flips.
The efficiency of the complete reconstruction of Voronoi
diagram in 2D is O(n log n), so for a large amount of flip
cases the reconstruction of the whole diagram can be sim-
ilarly efficient. However, for the DPD application usually
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time step is limited by entropy grow and the changes of
particles size are small, requires very few flips (less than
5%) in every time step.

More details about the construction of moving Voronoi
diagram can be found in [44].

Fig. 12. Mass change due to the Voronoi lattice motion

Fig. 13. DNA in the channel flow. Changes in density due to
the adaptation of the volume of the particles to the flow struc-

tures

The example of the particle deformation in a chan-
nel flow is given in figure 10. It should be noted that the
movement of the particles depends on the flow velocity.
Thus, for a given geometry, in some cases the mesh will
deform more and in other cases, they will stay mostly
in the original position. The original mesh is build from
equally distributed points, which are slightly perturbated
to obtain Voronoi diagram. In the case of channel flows
presented in the paper the mesh did not deform notice-
ably. The disadvantage of the deformation is that the ac-
curacy of the integration is lower and the numerical error
increases. Example is given for the channel flow, for the
same channel geometry which was considered for DNA
flow, except that DNA chain is not present. The time is
4 times longer than DNA simulation. Figure 12 presents
changes in the normalized mass of the particles in the

presence of extensive motion. It needs to be indicated that
it is strictly numerical error and can be reduced to any
small value by reducing the time step size. However, for
the flow with the DNA chain the extensive deformation
makes the changes in the DNA position faster. Hence, the
compromise has to be determined between accuracy re-
quirement and the desired speed of considered process.
Next computational issue is related to the boundary con-
ditions. Classical Dissipative Particle Dynamics represent
no-slip boundary condition with the frozen particle layer.
However, it leads to clustering of particles in the vicinity
of the boundaries and this is responsible for large den-
sity jump. To model wall boundary condition also frozen
particles layer was assumed. However, the mass exchange
between particles is allowed, as does entropy change. This
leads to very different result than the one obtained in
many particle methods. The boundary is represented ac-
curately, and there is no density jump. However, when
the immersed structures are present, some complex flow
patters cause density changes. The mass as it was shown
in Fig. 7b) does not change significantly, but the volume
of the particles does. This can be seen in Fig. 13. This nu-
merical inconvenience can be reduced by imposing certain
rules on the particle splitting or creation in the vicinity
of stagnation and wake region.

Another computational issue is related to the chan-
nel flow, for which periodic boundary conditions were
imposed and the flow was driven by the force. Periodic
boundary is represented in the way that the Voronoi edge
nodes have the same index, however two different actual
positions. The nodes, however have one position and only
communicate fact that some neighbours may have distant
position. This leads to the fact, that there are no extra
ghosts cells in the system and all particle seen on figures
are indeed the all particles of the fluid.

Finally, remaining issue considers time integration
and algorithm efficiency. For the time integration Runge-
Kutta method was used. Due to the fact that the Schmidt
number is of the same order as real fluids, stochastic part
in many cases is very small. Hence, the integration error
for that part is small as well. In the case when the fluctu-
ation term is larger the appropriate stochastic integration
scheme should be used. The stability of the algorithm is
estimated by the two factors Γij and Ωij . Parameter Γij

indicates changes in the shape of the Voronoi cells, while
Ωij is related to the relative movement of the mass cen-
tres of two interacting particles. Due to the fact that the
conservation of mass 18 needs to be fulfilled with as small
error as possible the parameter Γij will restrict the time
step. Reversible part will be determining the time step,
also when the irreversible processes are present. How-
ever, parameter Ωij determines how many time steps are
needed to obtain fully developed flow profile. Hence, the
difference between these two parameters is responsible for
the fact that in some cases the mesh moves extensively
and in some the flow can be established without notice-
able deformation of Voronoi lattice.
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Time efficiency can be also studied from the differ-
ent aspect. Schmidt number has influence not only on
the physical aspect of the flow. It determines how easily
the flow structures can be obtained. In case presented in
[28] to obtain channel flow 2.5 107 timesteps were needed
(2500 timesteps and every time step was averaged over
104 timesteps) with the calculations performed without
energy conservation. The energy equation makes parti-
cles more mobile, example in [29] and requires even longer
averaging. Here, however the flow in some cases can be
obtained after as low as 4000 timesteps with the same
amount of particles (10800) and this include energy equa-
tion. Thus, despite of inconvenience in requirement for
the move of the complex geometrical structures such as
Voronoi cells, the method is very time efficient.
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