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Abstract. To explore the basic principles of hierarchical materials designed from nanoscale and up, we have been studying the
mechanics of robust and releasable adhesion nanostructures of gecko [1]. On the question of robust adhesion, we have introduced
a fractal-like hierarchical hair model to show that structural hierarchy allows the work of adhesion to be exponentially enhanced
as the level of structural hierarchy is increased. We show that the nanometer length scale plays an essential role in the bottom-up
design and, baring fracture of hairs themselves, a hierarchical hair system can be designed from nanoscale and up to achieve flaw
tolerant adhesion at any length scales. For releasable adhesion, we show that elastic anisotropy leads to orientation-dependent
adhesion strength. Finite element calculations revealed that a strongly anisotropic attachment pad in contact with a rigid
substrate exhibits essentially two levels of adhesion strength depending on the direction of pulling.
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1. Introduction

Among hundreds of animal species for which adhesion
plays an important role for survival, gecko stands out in
terms of body weight and its extraordinary ability to ma-
noeuvre on vertical walls and ceilings [2]. Recent exper-
imental measurements [3–6] have provided evidence that
the adhesion ability of gecko is primarily due to the van
der Waals interaction [7] between a contacting surface and
gecko’s hairy feet which contain hundreds of thousands
of keratinous hairs called setae (Figs. 1a,b); each seta is
about 110 µm long and branches near its tip region into
hundreds of thinner fibrils called spatulae arranged in a
fractal-like hierarchical pattern (Fig. 1c). While it is re-
markable that gecko can make use of the relatively weak
van der Waals interactions to manoeuvre on unpredictable
rough surfaces under harsh environmental conditions, it
may be even more impressive that such robust adhesion
appears to be easily releasable during animal locomotion.
What are the mechanics principles behind such robust
and releasable adhesion in biology?

Contact mechanics theories have been used to under-
stand adhesion mechanisms in both engineering and bi-
ology. The classical Hertz theory [8] assumes no adhesive
interactions between contacting objects. Johnson et al.
[9] extended the Hertz theory to contact between adhesive
elastic spheres and developed the JKR (Johnson-Kendall-
Roberts) model in which the contact area is determined
via a balance between elastic and surface energies similar
to Griffith’s criterion [10] for crack growth in an elastic
solid. The JKR theory introduces into the Hertz solution

an additional crack-like singular term which satisfies the
Griffith condition near the contact edge. While the JKR
theory is quite appropriate for modelling contact between
large and soft materials, the assumption of a crack-like
singular field becomes increasingly inaccurate for small
and stiff materials, in which case different assumptions
on the elastic deformation of contacting objects have led
to the models of DMT (Derjaguin-Muller-Toporov) [11]
and Bradley [12]. Maugis [13] generalized the Dugdale
model of a crack in a plastic sheet [14] to adhesive contact
and developed a more general model (Maugis-Dugdale
model) that includes the JKR and DMT models as two
limiting cases. More recent studies have further extended
these theories to viscoelastic materials [15,16], coupled
normal and shear loads [17] and biological attachments
[4,6,18–21].

For contact between single asperities, one can define
adhesion strength as the tensile force per unit contact area
at pull-off, which can be maximized at the theoretical ad-
hesion strength via size reduction [22-25]. In this respect,
it is interesting to note that the existing contact mechan-
ics theories, including JKR, DMT and Maugis-Dugdale
models, all predicted infinite adhesion strength as the size
of contacting objects is reduced to zero. This behaviour is
unphysical because the adhesion strength can not exceed
the theoretical strength of adhesive interaction. The fact
that this behaviour also occurs in the Maugis-Dugdale
model is especially peculiar since the original Dugdale
model correctly predicted that the fracture strength is
bounded by the yield strength of the material. Gao et al.
[23] studied this problem and found that the root of this
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Fig. 1. The hierarchical adhesion structures of Gekko gecko. A
toe of gecko contains hundreds of thousands of setae and each
seta branches near its tip region into hundreds of spatulae. (a)
and (b): scanning electron micrographs of setae at different
magnifications. (c): spatulae, the finest terminal branches of
seta. ST: seta; SP: spatula; BR: branch. (Adapted afer Ref. 24)

Fig. 2. Flaw tolerance state of adhesion over a partially cracked
region

unphysical behaviour of the classical contact models can
be traced back to the original Hertz approximation of con-
tact surface profiles as parabolas, which is strictly valid
only if the size of the contact area is much smaller than
the overall dimension of the contacting objects; the lack
of strength saturation in these models is thus explained

from the fact that the parabolic approximation fails in the
limit of very small contacting bodies. As an example, Gao
et al. [24] showed that, if the exact geometry of a sphere
in contact with a flat surface is considered, the adhesion
strength indeed saturates at the theoretical strength as
the diameter of the sphere is reduced to zero. On the other
hand, Gao and Yao [23] showed that the adhesion strength
can in principle approach the theoretical strength for any
contact size via shape optimization. In practice, interfacial
crack-like flaws due to surface roughness or contaminants
inevitably weaken the actual adhesion strength. Gao et
al. [24] performed finite element calculations to show that
the adhesion strength of a flat-ended cylindrical punch in
partial contact with a rigid substrate (Fig. 2) saturates at
the theoretical strength below a critical radius around 200
nm for the van der Waals interaction. Similar discussions
of strength saturation for small contacting objects have
been made by Persson [22] for a rigid cylindrical punch
on an elastic half-space and by Glassmaker et al. [25] for
an elastic cylindrical punch in perfect bonding with a rigid
substrate. Gao and Yao [23] showed that the theoretical
strength can be achieved by either optimizing the shape of
the contact surfaces or by reducing the size of the contact
area; the smaller the size, the less important the shape. A
shape-insensitive optimal adhesion can be realized below
a critical contact size, which can be related to the intrinsic
capability of a small scale material to tolerate crack-like
flaws [26–28]. Hui et al. [29] and Glassmaker et al. [25]
demonstrated that fibrillar structures with slender elas-
tic fibrils can significantly enhance the adhesion strength.
Northen and Turner [30] made use of massively paral-
lel MEMS processing technology to produce hierarchical
hairy adhesive materials containing single slender pillars
coated with polymer nanorods, and reported significantly
improved adhesion in such multiscale systems.

In contrast to the increasing volume of research on
robust adhesion, the question of how adhesion is released
upon animal movement has so far received relatively little
attention. Autumn et al. [3] reported experimental data
that the pull-off force of an individual seta of gecko de-
pends strongly on the pulling angle. Gao et al. [24] nu-
merically simulated the pull-off force of a single seta and
found that the asymmetrical alignment of seta allows the
pull-off force to vary strongly (more than an order of mag-
nitude) with the direction of pulling.

Previous studies have provided significant insights into
various aspects of adhesion mechanisms in biology. How-
ever, a general understanding is still lacking with respect
to a number of critical issues. First, robust adhesion at
the level of a single hair or fibre does not automatically
address the problem of robust adhesion on rough surfaces
at macroscopic scales. It has been shown that size reduc-
tion can result in optimal adhesion strength at the level
of a single fibre [22–25]. However, it is not clear how this
size induced optimization might work at the system level
of hierarchical structures. Similarly, releasable adhesion at
the level of a single seta [3,24] does not provide full expla-
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nations on how releasable adhesion is achieved in macro-
scopic contact. The present paper is aimed to discuss the
basic mechanics principles which underline these issues.
For robust adhesion, we show that the fractal-like spat-
ula ultrastructure of gecko provides a systematical strat-
egy to optimize adhesion strength at larger length scales.
We show that, given sufficient hierarchical levels, a fractal
hairy system can be designed using a bottom-up approach
to achieve robust, flaw tolerant adhesion at any macro-
scopic length scales. However, consideration of crack-like
flaws in the hairs themselves imposes an upper bound on
the length scale for robust adhesion. For releasable adhe-
sion, we show that macroscopic elastic anisotropy allows
the adhesion strength to vary strongly with the direction
of pulling, leading to an orientation-controlled switch be-
tween attachment and detachment. The bottom-up design
principles of the hierarchical structures of gecko provide
not only a foundation to understand more general adhe-
sion mechanisms in biology but also suggest novel adhe-
sive materials for engineering applications.

2. Bottom-up designed hierarchical
structures for robust adhesion

2.1. Flaw tolerant adhesion of a single fibre. Adhe-
sive contact between elastic objects usually fail by prop-
agation of crack-like flaws initiated at poor contact re-
gions around surface asperities, impurities, trapped con-
taminants, etc. As an external load is applied to pull the
contacting objects apart, stress concentration is induced
near the edges of contact regions around surface asper-
ities. With increasing load, the intensity of stress con-
centration at the largest interfacial flaw will first reach a
critical level and the contact starts to fail by crack growth
and coalescence. Under this circumstance, the adhesion
strength is not optimal because only a small fraction of
material is highly stressed at any instant of loading. From
the robustness point of view, it would be best to seek a
design of material that allows the contact to fail not by
crack propagation, but by uniform detachment at the the-
oretical strength of adhesion (e.g. see Fig. 2 for a partially
cracked adhesion case), corresponding to achieving equal
load sharing at the point of failure, a concept also termed
as ’flaw tolerance’ [24,26–28]. According to this concept,
in an ideal flaw tolerant adhesion system, there should
be no crack propagation and coalescence as the contact
interface is pulled apart by uniform detachment.

For a single fibre on substrate, Gao and Yao [23] have
investigated the condition for flaw tolerant adhesion from
the point of view of variations in contact shape. It was
shown that flaw tolerant adhesion can be achieved when
the size of the fibre is reduced to below a critical size given
by

Rcr =
8
π

EfWad

(1 − ν2
f )σ2

th

, (1)

where Ef and νf are Young’s modulus and Poisson’s ratio
of the fibre; Wad and σth are the work of adhesion and the-

oretical adhesion strength. Alternative derivations based
on partial contact [24] or perfectly bonded contact [25]
lead to similar, but more relaxed, conditions on the fibre
size. Therefore, we shall adopt Eq. (1) as the basic flaw
tolerant condition for adhesion of a single fibre. The con-
cept of flaw tolerance has also been discussed by Gao and
Chen [28] for the simple scenario of an elastic tensile strip
containing an arbitrarily sized internal or edge crack.

2.2. Energy dissipation in fibrillar structures. It
can be seen from Eq. (1) that Rcr is proportional to the
work of adhesion Wad which is commonly taken as the sur-
face energy ∆γ = γf + γs − γfs, where γf , γs, γfs denote
the surface energies of fibre, substrate and fibre-substrate
interface respectively. This interpretation, however, is ap-
propriate only in the absence of other dissipation mech-
anisms. For slender elastic hairs in strong, flaw tolerant
adhesion with a solid surface, additional energy dissipa-
tion terms should be taken into account.

Fig. 3. Work of adhesion of a hairy surface. (a) Schematic of
a hairy surface containing arrays of fibrillar protrusions con-
tacting a substrate. (b) Effective stress-separation law for the
hairy surface on substrate versus that for two smooth surfaces

To illustrate this point, let us consider the adhesion be-
tween a larger fibre with a hairy surface in contact with a
substrate, as shown in Fig. 3(a). Compared to the normal
case of contact with a smooth surface, the larger fibre
in Fig. 3(a) contains a number of thinner fibrils on its
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tip surface, resulting in a two-levelled structure: an array
of smaller fibrils on the tip surface of a larger fibre. For
this structure, the work of adhesion for the larger fibre is
no longer equal to ∆γ even though the small fibrils in-
teract with the substrate only via van der Waals forces.
To estimate the work of adhesion of the large fibre, we
assume that the fibrils are thin enough to meet the condi-
tion for flaw tolerant adhesion. Fig. 3(b) plots the effective
stress-separation relationship for the hairy surface, assum-
ing Lennard-Jones [31] interaction law. While the stress-
separation curves for two smooth surfaces are described
by the van der Waals interaction laws at the atomic scale,
the separation at the level of the larger fibre is strongly
influenced by the elastic properties and geometry of the
fibrils. For sufficiently long fibrils, the elastic deforma-
tion of the fibrils will make significant contributions to
the separation process, and adhesion failure occurs by an
abrupt drop in stress near the theoretical strength of sur-
face interaction. In this way, the strain energy stored in
the fibrils is dissipated through dynamic snapping, result-
ing in an additional component to the work of adhesion.
In other words, the thin fibrils behave effectively as cohe-
sive bonds for the larger fibre. The work of adhesion for
the large fibre should therefore include the elastic energy
stored in the fibrils when they are stretched to failure, i.e.

Wad =
(
∆γ + σ2

thL/2Ef

)
ϕ, (2)

where L is the length of the fibrils and ϕ is the area frac-
tion of the fibril array. The first term within the bracket
represents the original van der Waals interaction energy
and the second term is the elastic energy lost during dy-
namic snapping of the fibrils as they are detached from the
substrate near the theoretical strength of van der Waals
interaction. Eq. (2) also shows why it is important to opti-
mize the strength of the lower level fibril structure via size
reduction: the strength of the lower scale fibrils directly
contributes to the work of adhesion of the larger scale fi-
bre. Taking ∆γ = 0.01 J/m2, σth = 20 MPa, L = 100 µm,
Ef = 1 GPa, ϕ = 0.5, the work of adhesion for the hairy
tipped fibre is calculated to be Wad ≈ 10 J/m2, a value
much larger than ∆γ. Such enhancement in work of adhe-
sion by fibrillar structures has been reported or discussed
by Jagota and Bennison [32], Persson [20], Gao et al. [27]
and Tang et al. [33]. Hence, slender hairs with large aspect
ratio can significantly increase the work of adhesion and
contribute to the robustness of adhesion at larger scales.
However, the length of the fibrils can not be too long as
there is an instability leading to fibre bunching as the as-
pect ratio of the fibrils increases. This is discussed in the
following subsection.

2.3. Anti-bunching condition in fibrillar struc-
tures. In an array of slender hairs planted on a solid sur-
face, the van der Waals interaction between neighbouring
fibres can cause them to bundle together when the aspect
ratio of the fibres is large enough [20,24,34–37]. For the
hairy adhesion structures, it is necessary to prevent the fi-

bres from bunching in order to ensure the proper adhesion
function. The exact form of the anti-bunching condition
depends on the geometry of the fibre. For example, the
anti-bunching condition for fibres of square cross section
has been derived by Hui et al. [35] and Gao et al. [24]. In
this paper, we focus on cylindrical fibres that have been
investigated by Glassmaker et al. [37].

Consider two neighbouring identical cylindrical fibres
with circular cross sections. When the separation 2w be-
comes small, the surface adhesive forces may cause them
to bundle together, as shown in Fig. 4(a). The stability
condition can be derived from the point of view of a maxi-
mum fibre length for spontaneous separation of two fibres
sticking together [24]. In other words, given fibre separa-
tion 2w and radius R, there exists a critical length Lcr

beyond which lateral bunching of neighbouring fibres be-
comes stable configurations. Assuming that the fibres are
distributed in a regular lattice pattern, the critical length
for bunching of cylindrical fibres can be expressed as [37]

Lcr = Rα

(
EfR

γf

)1/3 (√
ϕmax/ϕ − 1

)1/2

,

α =

[
33π4

25(1 − ν2
f )

]1/12

,

(3)

where ϕmax stands for the maximum value of area fraction
for a given hair distribution pattern. It can be shown that
ϕmax = π/2

√
3 for a triangular lattice (Fig. 4b), ϕmax =

π/4 for a square lattice (Fig. 4c) and ϕmax = π/3
√

3 for
a hexagonal lattice (Fig. 4d).

Fig. 4. Anti-bunching condition of a fibrillar structure. (a)
Configuration of self-bunching in an array of fibres distributed

in (b) triangular, (c) square or (d) hexagonal patterns

Equation (3) has been derived for the lateral stick-
ing between two neighbouring fibrils. Similar analysis can
also be carried out for other possible bunching configura-
tions involving multiple neighbouring fibrils. We find that
the critical fibril length for multiple fibrils bunching is no
less than that given by Eq. (3). It seems that the anti-
bunching condition between two fibres is the most critical
condition against bunching involving multiple fibres.

2.4. Fractal-like gecko hairs: bottom-up designed
hierarchical fibrillar structures. Given that the work
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of adhesion can be enhanced to a larger value by adopt-
ing a “hairy” structure [20,27,32,33], the critical length
for flaw tolerant adhesion, according to Eq. (1), can also
be extended to a larger scale. Meanwhile, the increase
in work of adhesion with each added level of hierarchy
should be limited by the maximum length of the fibres
allowed by the anti-bunching condition. In other words,
bunching between fibres provides an upper limit on how
much the flaw tolerant length scale can be extended by
one level of hierarchy. In order to achieve flaw tolerant
adhesion at macroscopic length scales, multiple levels of
hierarchy will be needed. To demonstrate the principle
of flaw tolerance via structure hierarchy, we propose a
“fractal gecko hairs” model [1], in which a hierarchical fib-
rillar structure is made from multiple levels of self-affine
“brush” structures, as shown in Fig. 5. In this structure,
the tips of fibres at each level of hierarchy are assumed to
be coated with a “brush” structure consisting of smaller
fibrils from one level below. The flaw tolerance and anti-
bunching conditions are applied to all hierarchical levels
from nanoscale and up to ensure robustness and stabil-
ity at all levels. That is, the robustness principle of flaw
tolerance and the stability principle of anti-bunching are
used to determine geometry of fibre at different scales.
The density of fibres at each level is determined such that
the work of adhesion is maximized at each level. This pro-
cedure can be iterated from the lowest level structure and
up until all the hierarchical levels are determined.

Fig. 5. Bottom-up design scheme of a hierarchical fibrillar
structure. At each level, the fibres depend on smaller fibrils
from the lower hierarchical levels as effective “adhesive bonds”
with a surface. Interestingly, the fibres themselves act as “ad-
hesive bonds” for larger fibres from higher hierarchical levels

Figure 6 shows the calculated hierarchical fibrillar
structures following the bottom-up optimization proce-
dure described above. In the calculations, we have taken
the material properties of keratin as Ef = 1.0 GPa, νf =
0.3, ∆γ = 10 mJ/m2, γf = 5 mJ/m2 and σth = 20 MPa.
Three lattice patterns, triangular, square and hexagonal,
for the fibre array are considered. As shown in Fig. 6(a)
and (b), both the fibre radius and length increase expo-
nentially with the level of hierarchy. For the lowest level of
structure, the critical fibre radius of flaw tolerant adhesion

is only around 100 nm for the selected parameters . With
hierarchical design, the flaw tolerant radius increases to 1
µm with 2 levels, 1 mm with 3 levels, 1 m with 4 levels
of hierarchy. With 8 levels, the dimension of flaw tolerant
radius has reached 1026 m, which is an astronomical size!
These calculations demonstrate the enormous potential
of a hierarchical structure for flaw tolerant adhesion. Fig.
6(c) displays the variation of the area fraction with the
number of hierarchy levels. Interestingly, the area fraction
converges to a constant after the third hierarchy level for
each fibre layout pattern. Fig. 6(d) shows the work of
adhesion at different hierarchical levels. In the first 6 lev-
els, the triangular fibre pattern exhibits higher work of
adhesion than the other two patterns. With further in-
crease in hierarchy levels, this advantage is taken over by
the hexagonal fibre pattern. Fig. 6(e) shows the effective
adhesion strength which decreases and asymptotically ap-
proaches zero with increasing levels of hierarchy. However,
the net pull-off force, as shown in Fig. 6(f), increases ex-
ponentially with increasing hierarchy. Fig. 6(g) illustrates
the number Nf

n of fibrils on the tip of a fibre at the next
level. We see that Nf

n increases sharply with increasing
hierarchy levels.

2.5. Fibre fracture: an upper limit on flaw toler-
ant adhesion design. In the preceding discussions, we
have focused our attention on failure along an adhesion in-
terface and implicitly assumed that the fibres themselves
do not fracture. In practice, as the adhesion strength is
enhanced by introducing hierarchical fibrillar structures,
the fracture of fibres eventually arises to become the dom-
inant issue for failure at the system level.

Consider a single fibre at hierarchy level n. A penny-
shaped crack is introduced in the center of the cross sec-
tion as a possible internal flaw. Other configurations of
crack-like flaws, such as edge/corner cracks/singularities,
can be considered without affecting the basic idea. The
critical tensile stress for fibre fracture can be determined
from the Griffith’s criterion for crack growth [38]. Consid-
ering a crack half the size of the fibre, this critical stress
is

σmax
n = 1.63

√
E∗

fΓf/Rn (4)

where Γf is the fracture energy of the fibre.
The relative significance of fibre fracture can be mea-

sured by a comparison between σmax
n and the effective

adhesion strength Sn at the n-th hierarchical level. If
σmax

n > Sn, adhesion failure is regarded as the dominant
issue and further increase in hierarchical levels can be con-
sidered. On the other hand, if σmax

n < Sn, fibre fracture is
regarded as the dominant issue, hence an upper limit on
the hierarchical design. Taking Γf = 5 J/m2 and E∗

f = 1
GPa, we compare σmax

n and Sn for the fractal hair struc-
tures constructed above. As shown in Fig. 7, for triangu-
lar and square fibre layout, only fibres within the first two
levels satisfy the condition σmax

n > Sn; for the hexagonal
layout, this condition is satisfied for the first three levels.
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Fig. 6. Variations of (a) fibre radius Rn, (b) fibre length Ln, (c) area fraction ϕn, (d) work of adhesion W ad
n , (e) adhesion

strength Sn, (f) pull-off force Fn and (g) the number of fibres Nf
n as a function of the hierarchical level n
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Fig. 7. Comparison between the fracture strength σmax
n of a

cracked fibre and the n-th level adhesion strength Sn of the
bottom-up designed fractal hairs. If σmax

n > Sn, adhesion
failure is regarded as the principal failure mode, otherwise
(σmax

n < Sn) fibre fracture is thought of as the principal fail-
ure mode

Hence, although there is no upper bound for flaw tolerant
adhesion via fractal hairs design, crack-like flaws in the
hairs themselves would impose a practical limit for the
usefulness of this strategy.

3. Releasable adhesion
For geckos and insects, robust adhesion alone is insuffi-
cient for survival as these animals need to move swiftly
on walls and ceilings. The reversibility of attachment is
just as important as the attachment. A conceivable strat-
egy for reversible adhesion is to design an orientation-
controlled switch between attachment and detachment,
with adhesion strength varying strongly with the direc-
tion of pulling. An ideal scenario of robust and releasable
adhesion is that the adhesion strength would be main-
tained near the theoretical adhesion strength when pulled
in some range of directions, but then dramatically re-
duced when pulled in another range of directions. The
switch between attachment and detachment thus can be
accomplished simply by changing the pulling angles (e.g.,
by exerting different muscles). Some known examples of
anisotropic adhesion systems in which the pull-off force
varies strongly with the direction of pulling include an
elastic tape on substrate [6,21,39] and a single seta of
gecko sticking on a wall [3,24]. In the case of these single
contact systems, the anisotropic behaviour of the pull-off
force can be attributed to the asymmetric alignment and
slender structure of the contacting object. While this be-
haviour suggests that the pull-off force of a single hair in
contact with a substrate can be controlled by pulling in
different directions, an open question is whether the adhe-
sive strength of a large array of fibres or a macroscopic at-
tachment pad in contact with a rough surface would show
similar behaviours. To address this question, here we con-
sider the issue of releasable adhesion from the viewpoint

of continuum interfacial failure mechanics. We use theo-
retical modelling and numerical simulations to show that
strong elastic anisotropy on the continuum level, achieved
via fibrillar microstructures or some other means, plays a
key role in releasable adhesion: a strongly anisotropic elas-
tic solid also exhibits a strong orientational dependence
of the pull-off force, similar to the behaviour of a single
seta studied by Gao et al. [24].

3.1. Orientation-dependent adhesion strength of
an anisotropic elastic material. To illustrate the in-
trinsic orientation-dependence of adhesion strength of an
anisotropic elastic material in contact with a rough sur-
face, we consider the linear elastic plane-strain problem
shown in Fig. 8(a) where a transversely isotropic elastic
half-space (y > 0) is brought into contact with a rigid sub-
strate. A plane-strain interfacial crack of size 2a is used to
represent random contact flaws due to surface roughness
or contaminants. Although the actual adhesion strength
depends on the crack size, the ratio between the maxi-
mum and minimum pull-off stresses as the pulling angle
varies will be shown to be independent of the crack geom-
etry and can be used as a measure of the releasability of
adhesion.

In this interfacial crack model, the longitudinal direc-
tion of the material (y0 axis) is tilted at an angle θ from
the tangent of the substrate surface (x-axis). A remote
uniaxial tensile stress σ∞ is applied at an angle φ with
respect to the x-axis. The transversely isotropic material
is characterized by five independent elastic constants: Et,
El, νt, νl and µ. Et and El stand for the transverse (x0

direction) and longitudinal (y0 direction) Young’s mod-
uli; νt, νl are Poisson’s ratios associated with transverse
(x0 direction) and longitudinal (y0 direction) loading; µ
denotes the shear modulus in the x0 − y0 plane.

We are interested in the pull-off stress of the above ad-
hesion system as a function of the pulling direction. This
problem can be solved as a classical interfacial crack be-
tween two dissimilar anisotropic elastic solids [40–45]. For
a remote tensile stress σ∞ applied at an inclined angle φ,
it can be shown that the pull-off stress is [1]

σ∞
cr (θ, φ) =

√
Wad/πa

sin φ
√

C[D22 cos2 (θ − φ) + D11 sin2 (θ − φ)]
,

(5)
where C, D11, D22 are constants dependent on the mate-
rial elastic constants.

Given material constants and the anisotropy direction
θ, Eq. (5) indicates that the adhesion strength varies as
a function of the pulling angle φ. If the Young’s modulus
in the longitudinal direction (e.g., along a fibre array) is
much greater than that in the transverse direction (e.g.
transverse to the fibre direction), i.e. El/Et À 1, accord-
ing to Eq. (5), σ∞

cr (θ, φ) reaches its maximum and min-
imum when φ = θ and φ = θ/2 + π/2 respectively. The
adhesion releasability can thus be measured by the ratio
of the maximum to the minimum pull-off stresses:
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Fig. 8. The pull-off stress of a strongly anisotropic (trans-
versely isotropic) elastic half-space sticking to a substrate. (a)
An interfacial crack-like flaw with width 2a is introduced as
a representative contact flaw due to surface roughness or con-
taminants. (b) Variation of the adhesion stress as a function
of the pulling angle for the anisotropic material in comparison

with that for an isotropic material

(σ∞
cr )max

(σ∞
cr )min

=
(1 + cos θ)

2 sin θ

(
D11

D22

)1/2

=
(1 + cos θ)

2 sin θ

[
E2

l

(
1 − ν2

t

)
Et (El − ν2

l Et)

]1/4

.

(6)

For small Poisson’s ratios, Eq. (6) suggests that the relea-
sibility of adhesion mainly depends on the stiffness ratio
El/Et and the anisotropy direction θ . The stronger the
material anisotropy, the higher the adhesion releasibility.
Assuming νt = νl = 0.3, θ = 30◦ and El

/
Et = 104, Fig.

8(b) plots the normalized pull-off stress as a function of
the pulling angle φ. We can see that the elastic anisotropy
causes about an order of magnitude change in adhesion
strength as the pulling angle varies. A switch between at-
tachment and detachment can be accomplished just by
shifting the pulling angle between these two directions.
In contrast, for an isotropic material with El = Et and
νl = νt the adhesion strength is much less sensitive to the
pulling direction. Therefore, strong elastic anisotropy can

result in an orientation-controlled switch between attach-
ment and detachment.

3.2. Orientation-dependent adhesion strength of
an attachment pad: numerical simulation. To fur-
ther verify the principle of orientation-controlled adhe-
sion switch via strong elastic anisotropy, we have also
performed numerical simulations of the adhesion of a
strongly anisotropic attachment pad (mimicking the hairy
structured tissue on gecko’s feet) via a general-purpose
finite element code Tahoe1 with specialized cohesive sur-
face elements for modelling adhesive interactions between
two surfaces. The constitutive relation for the cohesive
surface elements is specified in terms of a relation be-
tween the traction and separation across the contact in-
terface. Tahoe supports a number of traction-separation
laws including the Tvergaard-Hutchinson law [46] and
the Xu-Needleman law [47]. In present simulations, the
Tvergaard-Hutchinson law is adopted.

The simulation system consists of a plane strain
anisotropic (transversely isotropic) elastic pad adhering
to a rigid substrate with a crack situated at the central
region of the contact interface (representing an adhesion
flaw due to surface roughness), as shown in Fig. 9(a). A
displacement-controlled load is applied on the upper sur-
face. At a given displacement, summation of all the nodal
forces on the upper surface gives the pulling force F with
components Fx, Fy. The pulling angle is then calculated
via φ = tan−1 (Fy/Fx). Periodic boundary conditions
are applied on left and right sides. For comparison, both
isotropic case and anisotropic case are considered. Typical
material constants and adhesion parameters (see Table 2
in paper [1]) are selected to simulate the detachment pro-
cess of the pad. Fig. 9(b) plots the normalized pull-off
stress Fc (φ) / (Aσmax) as a function of the pulling angle
φ. In the anisotropic case, saturation of adhesion strength
is observed in the vicinity of φ = θ = 30◦, corresponding
to a plateau of the curve in the range of 20◦ < φ < 40◦. If
the pulling angle deviates from this range in either direc-
tion, the adhesion strength decreases quickly to a lower
plateau. This two-plateau adhesion strength is ideal for
rapid switch between attachment and detachment during
animal movement. The ratio between the maximum and
minimum strengths reaches four for the given geometry,
giving rise to significant releasability. In contrast, for the
isotropic cases, no variation in pull-off force is observed
as the pulling angle varies. Therefore, we conclude that
strong elastic anisotropy leads to releasable adhesion via
an orientation-controlled switch between strong and weak
adhesion.

4. Summary and discussion
We have studied the basic principles of robust and re-
leasable adhesion in the hierarchical structures of gecko.
The work has been inspired by comparative studies of

1http://tahoe.ca.sandia.gov
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biological attachment systems in nature. For robust ad-
hesion, we use a bottom-up designed fractal hair struc-
ture as a model to demonstrate that hierarchical fibril-
lar structures can lead to robust adhesion at macroscopic
scales. Barring fibre fracture, we show that the fractal
gecko hairs system can tolerate crack-like flaws without
size limit. However, in practice, as the adhesion strength is
enhanced by structural hierarchy, fibre fracture ultimately
becomes the dominant failure mechanism and places an
upper limit on the size scale of flaw tolerant adhesion. An
optimal design is to introduce an appropriate number of
hierarchical levels so that the adhesion interface and the
hairs have similar strength levels. For releasable adhesion,
we have shown that strong elastic anisotropy allows the
adhesion strength to vary strongly with the direction of
pulling. This orientation-dependent pull-off force enables
robust attachment in the stiff direction of the material to
be released by pulling in the soft direction. This strategy
can be summarized as “stiff-adhere, soft-release”.

Fig. 9. Releasable adhesion in an attachment pad. (a) Geome-
try of the attachment pad used in FEM calculations. (b) Varia-
tion of normalized pull-off force with the pulling angle. P.B.C.:

Periodic boundary condition

The complex hierarchical structures in biology provide
a rich source of inspirations for physical sciences and in-
dustrial applications. The concepts developed in this pa-

per should be of general value in understanding biological
attachment devices and the design of synthetic adhesive
systems in engineering [30,36]. Here we have considered
the effects of hierarchical energy dissipation and elastic
anisotropy on robust and releasable adhesion. Many other
important aspects of the problem, such as viscoelasticity
and large nonlinear deformation have not been taken into
account. Much further work will be needed to advance
our current understanding of bio-adhesion mechanisms.
The studies on such problems should be of interest not
only to the mechanics community but also to a variety of
other disciplines including materials science, biology and
nanotechnology.
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