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J. KORBICZ1∗, M. WITCZAK1, and V. PUIG2

1Institute of Control and Computation Engineering, University of Zielona Góra, 50 Podgórna, 65-246 Zielona Góra, Poland,
2Automatic Control Departament – Campus de Terrassa, Universidad Politécnica de Cataluña,

Rambla Sant Nebridi, 10, 08222 Terrassa, Spain

Abstract. The paper deals with the problems of designing observers and unknown input observers for discrete-time Lipschitz
non-linear systems. In particular, with the use of the Lyapunov method, three different convergence criteria of the observer are
developed. Based on the achieved results, three different design procedures are proposed. Then, it is shown how to extend the
proposed approach to the systems with unknown inputs. The final part of the paper presents illustrative examples that confirm
the effectiveness of the proposed techniques. The paper also presents a MATLABr function that implements one of the design
procedures.
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1. Introduction

A continuous increase in the complexity, efficiency, and re-
liability of the modern industrial makes the problem Fault
Detection and Isolation (FDI) [1] one of the most impor-
tant research directions underlying contemporary auto-
matic control. There is no doubt that the theory (and
practice, as a consequence) of fault diagnosis and control
is well-developed and mature for linear systems only [1,2].
There is also a number of different approaches that can
be employed to settle the robustness problems regarding
model uncertainty of linear systems [1,2]. Another kind of
solutions that may increase the performance of the FDI
scheme is based on an appropriate scheduling of the con-
trol test signals in such a way as to gain as much infor-
mation as possible about the system being supervised [3].
There are also techniques that utilize multi-objective opti-
mization [2,4] to improve the performance of FDI. Unfor-
tunately, these techniques can be used for linear systems
only.

Observers are commonly used in both control and fault
diagnosis schemes of non-linear systems [1,2,5,6,7,8]. Un-
doubtedly, the most common approach is to use robust ob-
servers, such as the Unknown Input Observer (UIO) [2,9],
which can tolerate a degree of model uncertainty and
hence increase the reliability of fault diagnosis. Although
the origins of UIOs can be traced back to the early 1970’s
(cf. the seminal work of Wang et al. [10]) the problem
of designing such observers is still of paramount impor-
tance both from the theoretical and practical viewpoints.
A large amount of knowledge on using these techniques
for model-based fault diagnosis has been accumulated
through the literature for the last three decades (see [1,2]

and the references therein). Generally, the design prob-
lems regarding UIOs can be divided into the three distinct
categories:

Design of UIOs for linear deterministic sys-
tems. Apart from the seminal paper of Wang et al. [10]
it is worth to note a few pioneering and important works
in this area, namely: the geometric approach by Bhat-
tacharyya [11], the inversion algorithm by Kobayashi
and Nakamizo [12], the algebraic approach by Hou and
Müller [13] and finally the approach by Chen, Patton and
Zhang [14]. The reader is also referred to the recently
published developments, e.g. [15].

Design of UIOs for linear stochastic systems.
Most design techniques concerning such a class of linear
systems make use of the ideas for linear deterministic sys-
tems along with the Kalman filtering strategy. Thus, the
resulting approaches can be perceived as Kalman filters
for linear systems with unknown inputs. The representa-
tive approaches of this group were developed by: Chen,
Patton and Zhang [2,14], Darouach and Zasadzinski [16],
Hou and Patton [17], and finally Keller and Darouach [18].

A significantly different approach was proposed in [8].
Instead of using the Kalman filter-like approach, the au-
thor employed the bounded-error state estimation tech-
nique [19] but the way of decoupling the unknown input
remained the same as that in [18].

Design of UIOs for non-linear systems. The de-
sign approaches developed for non-linear systems can gen-
erally be divided into three categories:

– non-linear state-transformation-based tech-
niques: apart from a relatively large class of systems
for which they can be applied, even if the non-linear

∗e-mail: j.korbicz@issi.uz.zgora.pl

31



J. Korbicz, M. Witczak, and V. Puig

transformation is possible it leads to another non-linear
system and hence the observer design problem remains
open (see [5,9] and the references therein).

– linearization-based techniques: such approaches
are based on a similar strategy as that for the extended
Kalman filter [1]. In [7,8] the author proposed an ex-
tended unknown input observer for non-linear systems.
He also proved that the proposed observer is convergent
under certain nonrestrictive conditions.

– observers for particular classes of non-linear sys-
tems: for example UIOs for polynomial and bilinear
systems [20,21] or UIOs for Lipschitz systems [22,23].

Taking into account the presented state-of-the-art re-
garding observers and unknown input observers for non-
linear systems, the number of real world applications (not
only simple simulated systems) of non-linear observers
should proliferate. Unfortunately, this is not the case. The
main reason of such a situation is related with a relatively
high design complexity of non-linear observers [5,24]. This
does not encourage engineers to apply them in an indus-
trial reality. Indeed, apart from the theoretically large po-
tential of the observer-based schemes, their computer im-
plementation cause serious problems for engineers that
are, usually, not fluent in a complex mathematical de-
scription involved in the theoretical developments.

Taking into account the above discussion, one objec-
tive of this paper is to propose a novel approach to design-
ing observers for non-linear discrete-time systems. An-
other objective is to show how to extend the proposed
technique to the systems with unknown input, i.e. to pro-
pose a design procedure of an UIO. The final objective of
the paper is to propose a MATLABr-based software that
can efficiently be used for solving various practical prob-
lems involving application of observers. Apart from the
purely commercial character of this numerical computa-
tion software, it is widely used in the control engineering
community. This was the main reason for using it for the
computer implementation of the proposed approach.

The paper is organized as follows. Section 2 presents
an introductory background regarding observers and, in
particular, observers for Lipschitz non-linear systems be-
ing the subject of the paper. Section 3 presents a com-
prehensive convergence analysis of the proposed observer
with the use of the Lyapunov method. In Section 4, con-
venient and effective design procedures are proposed. In
Section 5, a straightforward approach for extending the
proposed techniques to the systems with unknown inputs
is described and carefully discussed. Section 6 presents a
number of illustrative examples that confirm the effective-
ness of the proposed approaches. Finally, the MATLABr-
based computational procedure is presented in Appendix.

2. Preliminaries
A large amount of knowledge on designing observers for
non-linear systems has been accumulated through the lit-
erature since the beginning of the 1970s (see, e.g., [6] and

the references therein). A customary approach is to lin-
earize the non-linear model around the current state esti-
mate, and then to apply techniques for linear systems, as
is the case for the extended Kalman filter (see, e.g., [25,26]
and the references therein). Unfortunately, this strategy
works well only when the linearization does not cause a
large mismatch between the linear model and non-linear
behaviour of the system. To improve the effectiveness of
state estimation, it is necessary to restrict the class of non-
linear systems while designing observers. For example, the
Lipschitz systems that can be described as follows:

ẋ(t) = Ax(t) + Bu(t) + h(y(t),u(t))
+ g (x(t), u(t)) ,

(1)

y(t) = Cx(t), (2)

where x(t) ∈ Rn stands for the state vector, y(t) ∈ Rm

is the output, u(t) ∈ Rr is the input, h(y(t),u(t))
and g (x(t), u(t)) are a non-linear functions, where
g (x(t), u(t)) satisfies:

‖g (x1, u) − g (x2, u) ‖2 ≤ γ‖x1 − x2‖2, ∀x1, x2, u (3)

where γ > 0 stands for the Lipschitz constant. Many non-
linear systems can be described by (1), e.g. sinusoidal non-
linearities satisfy (3), even polynomial non-linearities sat-
isfy (3) assuming that x(t) is bounded. This means that
(1)–(2) can be used for describing a wide class of non-
linear systems, which is very important from the point of
view of potential industrial applications.

The first solution for the state estimation of (1)–(2)
was developed by Thau [27]. Assuming that the pair
(A, C) is observable, Thau proposed a convergence con-
dition but he did not provide an effective design proce-
dure of the observer. In other words, in light of this ap-
proach, the observer has to be designed with a trial-and-
error procedure that amounts to solving a large number
of Lyapunov equations and then checking the convergence
conditions. Many different authors followed the similar
procedure but they proposed less restrictive convergence
conditions (see, e.g. [28]). Finally, [29–31] proposed a more
effective observer design. In particular, in [30] the authors
employed the concept of the distance to unobservability
of the pair (A, C) and proposed an iterative coordinate
transformation technique reducing the Lipschitz constant.
In [29] the authors employed and improved the results
of [30] but the proposed design procedure does not seem
straightforward. In [31] the author reduced the observer
design problem to a global optimization one. The main
disadvantage of this approach is that the proposed al-
gorithm does not guarantee to obtain a global optimum.
Thus, many trial-and-error steps have to be carried out to
obtain a satisfactory solution. Recently, in [23] the authors
proposed the so-called dynamic observer with a mixed bi-
nary search and H∞ optimization procedure.

Unfortunately, the theory and practice concerning ob-
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servers for discrete-time counterpart of (1)–(2):

xk+1 = Axk + Buk + h(yk, uk) + g (xk, uk) , (4)
yk+1 = Cxk+1, (5)

are significantly less mature than these for (1)–(2). In-
deed, there are a few papers only [32,33] dealing with
discrete-time observers. The authors of the above works
propose different parameterizations of the observer but
the common disadvantage of these approaches is that
a trial-and-error procedure has to be employed that
boils down to solving a large number of Lyapunov equa-
tions. Moreover, the authors do not provide convergence
conditions similar to those for the continuous-time ob-
servers [27,28].

3. Convergence analysis
Let us consider an observer for the system (4)–(5) de-
scribed by the following equation:

x̂k+1 =Ax̂k+Buk+ h(yk, uk) +g (x̂k, uk)
+K(yk−Cx̂k),

(6)

where K stands for the gain matrix. The subsequent part
of this section shows three theorems that present three dif-
ferent convergence conditions of (6). Following Thau [27]
and other researchers, let us assume that the pair (A, C)
is observable. Let σ (·) and σ̄ (·) stand for the minimum
and maximum singular values, and P = P T , P > 0 be a
solution of the following Lyapunov equation:

Q = P − AT
0 PA0, A0 = A − KC, (7)

where A0 is a stable matrix, and Q = QT , Q > 0.

Theorem 1. Let us consider an observer (6) for the
systems described by (4)–(5). If the Lipschitz constant γ
(cf. (3)) satisfies:

γ <

√
σ

(
Q − 1

2P
)

σ̄ (P )
, Q − 1

2
P Â 0 (8)

then the observer (6) is asymptotically convergent.
Proof. Let us define the state estimation error for (6):

ek = xk − x̂k, (9)

and
zk = g (xk,uk) − g (x̂k, uk) . (10)

Substituting (4)–(5), (6) and (10) into (9) gives:

ek+1 = A0ek + zk. (11)

Let us define the following Lyapunov function:

Vk+1 = eT
k+1Pek+1, (12)

and then inserting (11) one can get:

Vk+1 = eT
k AT

0 PA0ek + 2eT
k AT

0 Pzk + zT
k Pzk. (13)

According to the Lyapunov theorem, the observer (6) is
asymptotically convergent iff:

∆V = Vk+1 − Vk < 0. (14)

Substituting (12) and (13) into (14) yields:

∆V = eT
k

[
AT

0 PA0 − P
]
ek + 2eT

k AT
0 Pzk

+ zT
k Pzk < 0. (15)

Knowing that:(
P

1
2 A0zk − P

1
2 zk

)T (
P

1
2 A0zk − P

1
2 zk

)
≥ 0,

one can obtain that:

2eT
k AT

0 Pzk ≤ eT
k AT

0 PA0ek + zT
k Pzk. (16)

Inserting (16) into (15) yields:

∆V ≤ 2eT
k

[
AT

0 PA0 −
1
2
P

]
ek + 2zT

k Pzk < 0. (17)

Using (3) it can be shown that:

zT
k Pzk ≤ γ2σ̄ (P )eT

k ek. (18)

Substituting (18) into (17) gives:

∆V ≤ 2eT
k

[
γ2σ̄ (P ) I −

[
Q − 1

2
P

]]
ek < 0. (19)

The condition (19) is equivalent to:

γ <

√
1

σ̄ (P )
eT

k

[
Q − 1

2P
]
ek

eT
k ek

. (20)

Using the bound of the Rayleigh quotient, i.e.
eT

k

[
Q − 1

2P
]
ek/eT

k ek ≥ σ
(
Q − 1

2P
)
, it is possible to ob-

tain (8), which completes the proof.

Theorem 2. Let us consider an observer (6) for the
systems described by (4)–(5). If the Lipschitz constant γ
(cf. (3)) satisfies:

γ <

√
σ

(
Q − AT

0 PPA0

)
σ̄ (P ) + 1

, Q − AT
0 PPA0 Â 0 (21)

then the observer (6) is asymptotically convergent.
Proof. Using (3) and the Cauchy-Schwartz inequality, it
can be shown that:

2eT
k AT

0 Pzk ≤ 2γ‖PA0ek‖2‖ek‖2. (22)

Applying the identity:

(‖PA0ek‖2 − γ‖ek‖2)
2 ≥ 0,

to (22) yields:

2eT
k AT

0 Pzk ≤ eT
k AT

0 PPA0ek + γ2eT
k ek. (23)

Substituting (23) into (15) and then applying (18) leads
to:

∆V ≤ eT
k

[
γ2(σ̄ (P ) + 1)I

−
[
Q − AT

0 PPA0

]]
ek < 0. (24)

Finally, it is straightforward to show that (24) is equiva-
lent to (21), which completes the proof.
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Theorem 3. Let us consider an observer (6) for the
systems described by (4)–(5). If the Lipschitz constant γ
(cf. (3)) satisfies:

γ <
σ

(
Q

1
2

)
√

σ̄
(
Q− 1

2 AT
0 P

)2

+ σ̄ (P ) + σ̄
(
Q− 1

2 AT
0 P

) (25)

then the observer (6) is asymptotically convergent.
Proof. Using (15), (7) and (18) it can be shown that the
convergence condition is:

∆V ≤ eT
k

[
γ2σ̄ (P ) I − Q

]
ek + 2eT

k AT
0 Pzk < 0. (26)

and hence:

2eT
k AT

0 Pzk < eT
k

[
Q − γ2σ̄ (P ) I

]
ek,

which is equivalent to:

2zT
k PA0ek < eT

k

[
Q − γ2σ̄ (P ) I

]
ek. (27)

Inequality (27) can be written as follows (cf. [34]):

2
(
Q− 1

2 AT
0 Pzk

)T (
Q

1
2 ek

)
<

(
Q

1
2 ek

)T (
Q

1
2 ek

)
− γ2σ̄ (P )eT

k ek,

and, hence, the convergence condition is:

2
∥∥∥Q− 1

2 AT
0 Pzk

∥∥∥
2

<∥∥∥Q
1
2 ek

∥∥∥
2
− γ2σ̄ (P )

‖ek‖2
2∥∥∥Q

1
2 ek

∥∥∥
2

. (28)

Using (18), it can be shown that:∥∥∥Q− 1
2 AT

0 Pzk

∥∥∥
2
≤ γσ̄

(
Q− 1

2 AT
0 P

)
‖ek‖2, (29)

then knowing that:∥∥∥Q
1
2 ek

∥∥∥
2
≥ σ

(
Q− 1

2

)
‖ek‖2,

and
‖ek‖2∥∥∥Q

1
2 ek

∥∥∥
2

≤ 1

σ
(
Q

1
2

) ,

inequality (28) can be written as follows:

σ̄ (P )

σ
(
Q

1
2

)γ2 + 2γσ̄
(
Q− 1

2 AT
0 P

)
− σ

(
Q

1
2

)
< 0. (30)

Since (30) contains a quadratic function then it is clear
that:

γ <

(√
σ̄

(
Q− 1

2 AT
0 P

)2

+ σ̄ (P ) +

−σ̄
(
Q− 1

2 AT
0 P

)) σ
(
Q

1
2

)
σ̄ (P )

. (31)

Finally, using the identity:(√
σ̄

(
Q− 1

2 AT
0 P

)2

+ σ̄ (P ) − σ̄
(
Q− 1

2 AT
0 P

))
·(√

σ̄
(
Q− 1

2 AT
0 P

)2

+ σ̄ (P ) + σ̄
(
Q− 1

2 AT
0 P

))
= σ̄ (P ) ,

inequality (31) can be transformed into (25), which com-
pletes the proof.
Remark 1. The convergence criteria described by the
above theorems are obtained by eliminating the term:

2eT
k AT

0 Pzk,

from (15) in three distinct ways. This means that the ob-
tained criteria are relatively conservative and the scale of
this conservatism is strongly related with the inaccuracy
of a given elimination technique.
Remark 2. There is no doubt that there are particular
choices of Q which will bring forth the least conservative
bounds (8), (21) and (25), respectively. Unfortunately, the
structural relation between P and Q of (7) cannot be re-
solved without first solving the Lyapunov equation. This
is the main reason why it is impossible to chose one cri-
terion that gives the least conservative bound of γ for an
arbitrary matrix Q.
Remark 3. Unfortunately, (8), (21) and (25) may merely
serve as methods for checking the convergence but the
gain matrix K has to be determined beforehand. This
means that the design procedure boils down to selecting
various gain matrices K, solving Lyapunov equation (7),
and then checking the convergence conditions (8), (21)
and (25). There is no doubt that this is an ineffective and
inconvenient approach.

Taking into account the above remarks, the objective
of the subsequent section is to develop three different de-
sign procedure that are based on (8), (21) and (25).

4. Design procedures
4.1. Design procedure 1. It can easily be shown
that (19) is equivalent to:

γ2σ̄ (P ) I + AT
0 PA0 −

1
2
P ≺ 0. (32)

Assuming that σ̄ (P ) < β, β > 0, and knowing that
σ̄ (P ) < β is equivalent to β − β−1PP Â 0 which can
be written in the following LMI form:[

βI P
P βI

]
Â 0, β > 0, P Â 0, (33)

(32) can be transformed into a set of inequalities:

γ2βI + AT
0 PA0 −

1
2
P ≺ 0, (34)

and (33). Inequality (34) can be written in the following
form: [

1
2P − γ2βI AT

0

A0 P−1

]
Â 0, (35)
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which is equivalent to:[
I 0
0 P

] [
1
2P − γ2βI AT

0

A0 P−1

] [
I 0
0 P

]
Â 0. (36)

Finally, (36) can be written in the following form:[
1
2P − γ2βI AT

0 P
PA0 P

]
Â 0. (37)

Substituting K = P−1L into (37) yields the following
LMI: [

1
2P − γ2βI AT P − CT LT

PA − LC P

]
Â 0. (38)

Thus, the design procedure can be summarized as follows:

Step 1. Obtain γ for (4)–(5).
Step 2. Solve a set of LMIs: (33) and (38).
Step 3. Obtain the gain matrix K = P−1L.

In spite of the simplicity and effectiveness of the proposed
approach it cannot directly be applied to determine K
maximizing γ for which the observer (6) is convergent.
The objective of the subsequent part of this section is to
tackle the-above-defined task. It can be observed that (38)
can be transformed into the following form:[

− 1
2P CT LT − AT P

LC − PA −P

]
≺ λ

[
βI 0
0 0

]
(39)

where λ = −γ2. Thus, the task can be reduced to the
generalized eigenvalue minimization problem [35,36] that
can be formulated as follows:

min
P ,L,β

λ

under the LMI constraints (33) and (39). As can be ob-
served, the right hand side of (39) is semi-positive definite.
The positivity of the right hand side of (39) is, usually, re-
quired for the well-posedness of the task and the applica-
bility of the polynomial-time interior point methods [36].
For a simple remedy to this problem the reader is referred
to [36].
It should be also strongly underlined that when the opti-
mization problem described by Steps 1–3 (or in the form
of the generalized eigenvalue minimization problem) can-
not be solved due to its infeasibility then the only way
out is to transform the original description of the sys-
tem into an equivalent one with a smaller Lipschitz con-
stant. Some guidance regarding such a strategy are given
in [29,30]. Thus, due the the observability assumption, the
algorithm is guaranteed to converge as γ → 0. This is, of
course, the common drawback of the existing approaches
to the design of observers for Lipschitz non-linear systems
(cf. [23,29,30]).

4.2. Design procedure 2. It can easily be shown
that (24) is equivalent to:

γ2(σ̄ (P ) + 1)I + AT
0 PA0 + AT

0 PPA0 − P ≺ 0. (40)

Assuming that σ̄ (P ) < β, β > 0, and AT
0 PPA0 ≺ X,

X = XT , which can be expressed as:[
X AT

0 P
PA0 I

]
Â 0, (41)

inequality (40) can be written as follows:[
P − γ2(β + 1)I − X AT

0 P
PA0 P

]
Â 0. (42)

Substituting K = P−1L into (41) and (42) yields the
following set of LMIs:[

X AT P − CT LT

PA − LC I

]
Â 0, (43)

and [
P − γ2(β + 1)I − X AT P − CT LT

PA − LC P

]
Â 0. (44)

Thus, the new design procedure can be summarized as
follows:

Step 1. Obtain γ for (4)–(5).
Step 2. Solve a set of LMIs: (33), (43), and (44).
Step 3. Obtain the gain matrix K = P−1L.

Similarly as in Section 4.1, the selection of K maximizing
γ for which the observer (6) is convergent can be formu-
lated as the generalized eigenvalue minimization problem:

min
P ,L,X,β

λ

under the LMI constraints (33), (43), and[
X − P CT LT − AT P

LC − PA −P

]
≺ λ

[
(β + 1)I 0

0 0

]
. (45)

where (45) is obtained by suitably rearranging (44), and
λ = −γ2.

4.3. Design procedure 3. Inequality (30) can be trans-
formed into an equivalent form:

σ̄ (P ) γ2 + 2γσ
(
Q

1
2

)
σ̄

(
Q− 1

2 AT
0 P

)
− σ (Q) < 0. (46)

Knowing that:

σ
(
Q

1
2

)
σ̄

(
Q− 1

2 AT
0 P

)
≤ σ̄

(
AT

0 P
)
, (47)

inequality (46) can be written as:

σ̄ (P ) γ2 + 2γσ̄
(
AT

0 P
)
− σ (Q) < 0. (48)

Assuming that σ̄ (P ) < β, β > 0, and σ̄
(
AT

0 P
)

< δ,
δ > 0, which can be expressed as:[

δ AT
0 P

PA0 δ

]
Â 0, δ > 0. (49)

Now it is straightforward to show that (48) can be repre-
sented by:

P − AT
0 PA0 − γ2βI − 2γδI Â 0. (50)

Thus, inequality (50) can be written as follows:[
P − γ2βI − 2γδI AT

0 P
PA0 P

]
Â 0. (51)
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Substituting K = P−1L into (49) and (51) yields the
following set of LMIs:[

δ AT P − CT LT

PA − LC δ

]
Â 0, δ > 0 (52)

and [
P − γ2βI − 2γδI AT P − CT LT

PA − LC P

]
Â 0. (53)

Thus, the third design procedure can be summarized as
follows:

Step 1. Obtain γ for (4)–(5).
Step 2. Solve a set of LMIs: (33), (52), and (53).
Step 3. Obtain the gain matrix K = P−1L.

Similarly as in Section 4.1, the selection of K maximizing
γ for which the observer (6) is convergent can be formu-
lated as the generalized eigenvalue minimization problem.
First, let us assume that:

−X ≺ λβI, X Â 0 (54)

where X = XT , λ = −γ. Thus, inequality (53) can be
expressed as:[

−P CT LT −AT P
LC−PA −P

]
≺λ

[
X+2δI 0

0 0

]
. (55)

Finally, the generalized eigenvalue minimization problem
boils down to: min

P ,L,X,β,δ
λ , under the LMI constraints

(33), (52), (54)-(55).

5. Design of an unknown input observer
Irrespective of the identification method selected for de-
signing the model, there always exists the problem of
model uncertainty, i.e. the model-reality mismatch. To
overcome this problem, many approaches have been pro-
posed [1,2]. Undoubtedly, the most common approach is
to use robust observers, such as the unknown input ob-
server [1,2,8], which can tolerate a degree of model uncer-
tainty and hence increase the reliability of fault diagnosis.
In such an approach, the model-reality mismatch can be
represented by the so called unknown input. There are
relatively scare works on designing UIOs for non-linear
Lipschitz systems [22,23]. All the presented works deal
with the continuous-time system.

Thus, the purpose of the subsequent part of this sec-
tion is to present a straightforward approach for extend-
ing the techniques proposed in the preceding sections to
the discrete-time Lipschitz systems with unknown inputs,
which can be described as follows:

xk+1 = Axk + Buk + h(yk, uk) + g (xk, uk) + Edk,
(56)

yk+1 = Cxk+1, (57)

where dk ∈ Rq, q ≤ m stands for an unknown input and
E denotes its distribution matrix.

In order to use the techniques described in the preced-
ing sections for the state estimation of the system (56)–
(57) it is necessary to introduce some modifications con-
cerning the unknown input. In the existing approaches,
the unknown input is usually treated in two different
ways. The first one (see e.g. [2]) relies on introducing
an additional matrix into the state estimation equation,
which is then used for de-coupling the effect of the un-
known input on the state estimation error (and conse-
quently on the residual signal). In the second one (see
e.g. [18]), the system with an unknown input is suitably
transformed into a system without it. In both cases the
necessary condition for the existence of a solution to the
unknown input de-coupling problem is:

rank(CE) = rank(E), (58)

(see [2] for a comprehensive explanation). If condition (58)
is satisfied, then it is possible to calculate H = (CE)+ =[
(CE)T CE

]−1 (CE)T , where (·)+ stands for the pseudo-
inverse of its argument. Thus, let us use the first of
the above mentioned techniques for designing UIOs [18].
By multiplying (57) by H and then inserting (56) it is
straightforward to show that:

dk = H [yk+1 − C [Axk + Buk + h(yk, uk)
+ g (xk, uk)]] .

(59)

Substituting (59) into (56) gives:

xk+1 = Āxk + B̄uk + h̄ (uk, yk) + ḡ (xk, uk)
+ Ēyk+1,

(60)

where

Ā = ḠA, B̄ = ḠB, ḡ (·) = Ḡg (·) , h̄ (·) = Ḡh(·)
Ḡ = I − EHC, Ē = EH.

Thus, the unknown input observer for (56)–(57) is given
as follows:

x̂k+1 = Āx̂k + B̄uk + h̄ (uk, yk) + ḡ (xk, uk)
+ Ēyk+1 + K(yk − Cx̂k). (61)

Now, let us consider the second of the above-mentioned
approaches that can be used for designing the UIO [2].
For the sake of notational simplicity, let us start with the
UIO for linear discrete-time systems:

xk+1 = Axk + Buk + Edk,

yk+1 = Cxk+1, (62)

that can be described as follows:

zk+1 = Fzk + TBuk + K1yk, (63)
x̂k+1 = zk+1 + H1yk+1, (64)

where

K1 = K + K2, (65)
E = H1CE, (66)

T = I − H1C, (67)
F = TA − KC. (68)
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Substituting (64) into (63) and then using (67) and (68)
it can be shown that

x̂k+1 = Ax̂k + Buk − H1C[Ax̂k + Buk] − KCx̂k

− FH1yk + [K + FH1]yk + H1yk+1,
(69)

or equivalently:

x̂k+1 = x̂k+1/k + H1(yk+1 − Cx̂k+1/k) + K(yk − Cx̂k),
(70)

where

x̂k+1/k = Ax̂k + Buk. (71)

Substituting the solution of (66), i.e. H1 = EH into (70)
yields:

x̂k+1 = [I − EHC]x̂k+1/k + EHyk+1 + K(yk − Cx̂k).
(72)

Thus, in order to use (72) for (56)-(57) it is necessary to
change (71) into

x̂k+1/k = Ax̂k + Buk + h(yk, uk) + g (x̂k,uk) . (73)

Finally, by substituting (73) into (72) and then comparing
it with (61) it can be seen that the observer structures be-
ing considered are identical. On the other hand, it should
be clearly pointed out that they were designed in a sig-
nificantly different way.

Since the observer structure is established then it is
possible to describe its design procedure.

A simple comparison of (4) and (60) leads to the con-
clusion that the observer (61) can be designed with one of
the techniques proposed in Section 4, taking into account
that (cf. (3)):

‖ḡ (x1, u) − ḡ (x2, u) ‖2 ≤ γ̄‖x1 − x2‖2, ∀x1, x2,u,
(74)

and assuming that the pair (Ā, C) is observable.

6. Experimental results
6.1. Observer design and state estimation. The
main objective of the present section is to compare the
performance of the three different design procedures (pro-
posed in Section 4).

First, the problem is to obtain the gain matrix K max-
imizing γ (for which the observer (6) is convergent) for the
systems given by:

A =
[

0.2 0.01
0.1 0.2

]
, C = [1 0], (75)

and

A =

 0.137 0.199 0.284
0.0118 0.299 0.47
0.894 0.661 0.065

 , C =
[

1 0 0
0 1 0

]
. (76)

To tackle this problem the approaches presented in Sec-
tion 4 were implemented with MATLABr. One of the
functions that implements the approach described in Sec-
tion 4.2 is presented and carefully discussed in Appendix.

Table 1
Maximum γ for (75) and (76)

Design procedure γ for (75) γ for (76)
1 0.6765 0.5563
2 0.7998 0.6429
3 0.7916 0.5422

The obtained results are presented in Table 1. It can
be observed that the maximum difference between the
maximum Lipschitz constant obtained with the proposed
design procedures is greater than 15%. Apart from the
fact that the second design procedure gave the best re-
sults, it is probably impossible to prove that this is the
best choice for all systems. The above results confirm Re-
mark 1, i.e. it is very hard to chose a priori a criterion that
gives the least conservative bound of γ. It is also worth
to note that, contrary to the approaches presented in the
literature (see e.g., [29–31,33]) the proposed procedures
provide the gain matrix K that is a global solution of γ
maximization problem.

Now let us consider a one-link manipulator with rev-
olute joints actuated by a DC motor [30] described by
(1)-(2) with the following parameters:

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 10

1.95 0 −1.95 0

 ,

B = [0 21.6 0 0]T , C =
[

1 0 0 0
0 1 0 0

]
,

g (x(t), u(t)) = [0 0 0 − 0.333 sin(x3)], h(y(t), u(t)) = 0,
(77)

where x1(t) stands for the angular rotation of the motor,
x2(t) is the angular velocity of the motor, x3(t) is the an-
gular position of the link, and x4(t) is the angular velocity
of the link.

The discrete-time counterpart (4)-(5) of (77) was ob-
tained by using the Euler discretization of a step size
τ = 0.01. The input signal was given by uk = sin(2πτk)
while the initial condition for the observer and the system
were x̂0 = 1 and x0 = 0, respectively.

The first objective was to compare the performance
of the three different design procedures (proposed in Sec-
tion 4). In particular, the problem was to obtain the gain
matrix K maximizing γ.
As can be easily observed, the Lipschitz constant γ =
τ0.333. The following maximum values of γ were ob-
tained for the consecutive design procedures (i.e. 1, 2, 3):
γ = 0.0329, γ = 0.0802, γ = 0.0392. This means that the
acceptable γ (provided by the second design procedure)
is more than 24 times larger than the actual γ = 0.00333.
Similarly as in the preceding examples, the best results
were achieved for the second design procedure. The re-
sulting gain matrix K is:
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K =


1.0000 0.0100
−0.4860 1.7926

0 1.9822
0.0195 3.2371

 . (78)

For the purpose of comparison, a continuous-time ob-
server:

˙̂x(t) = Ax̂(t) + Bu(t) + g (x̂(t), u(t))
+ K(y(t) − Cx̂(t)), (79)

designed by Rajamani and Cho [30] was employed. They
obtained the following gain matrix K for (77):

K =


0.8307 0.4514
0.4514 6.2310
0.8238 1.3072
0.0706 0.2574

 , (80)

which is also utilized in this paper.

Fig. 1. Angular rotation of the motor x1 and their estimates

Figures 1–4 show the results of state estimation. As
can be observed, the state estimates obtained with the
proposed observer converge rapidly to the correspond-
ing true values (compare especially the estimates for k =
0, . . . , 40 exposed by the plots on the right in Figs. 1–4).
Indeed, it can be easily seen that the proposed observer

Fig. 2. Angular velocity of the motor x2 and their estimates

is superior to the one designed with the design procedure
proposed in [30]. This superiority can be clearly seen in
Fig. 5, which exposes the evolution of the norm of the
state estimation error.

6.2. Design of UIO and fault detection. Let us con-
sider the following nonlinear system:

xk+1 = Axk + B (uk + fk) + g (xk) + Edk,

yk+1 = Cxk+1,

where:

A =

 0.137 0.199 0.284
0.0118 0.299 0.47
0.894 0.661 0.065

 , B = [0.25 0.6 0.1]T ,

C =
[

1 0 0
0 1 0

]
, E =

0
1
0

 ,

g (xk) =

[
0.6

cos(12x2,k)
x2

2,k + 10
0 − 0.333 sin(x3,k)

]T

,

and fk stands for the actuator fault, which is given as
follows:

fk =
{
−0.1uk, 50 ≤ k ≤ 150

0, otherwise .
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Fig. 3. Angular position of the link x3 and their estimates

The initial condition for the system and the observer
are x0 = [3 2 1]T and x̂0 = 0, respectively. Moreover, the
input and unknown input are given by uk = sin(0.02πk)
and dk = 0.3 sin(0.1k) cos(0.2k), respectively.

Applying the approach presented in Section 5, it can
be observed that γ̄ = γ. Following the general approach
for estimating the Lipschitz constant [28], one can show
that γ̄ = γ = 0.719. Knowing the Lipschitz constant it is
possible to use the procedures presented in Section 4 to
design the UIO. The maximum allowable γ for the con-
secutive (1, 2 and 3) design procedures were 0.65, 0.772
and 0.722, respectively. This means that the observer (the
gain matrix K) obtained with the first procedure cannot
be employed because the maximum γ̄ for which the ob-
server is convergent is γ̄ = 0.65. Indeed, it is smaller than
the actual value γ̄ = 0.719.

Thus, it can be seen that the second design proce-
dure is less restrictive for the system being considered.
The similar property has been observed for a large num-
ber of numerical examples. For the purpose of compari-
son, a conventional observer was designed with the use of
the second procedure, i.e. the effect of an unknown input
was neglected during the design. Figures 6–7, present the
residual for the UIO and the conventional observer. As

can be observed, this is impossible to detect the actuator
fault with the conventional observer and the fixed thresh-
old (presented in the figure). Contrary, it is straightfor-
ward to assign a fixed threshold to the residual generated
with the UIO, and then to detect the actuator fault with
z1,k = y1,k − ŷ1,k (Fig. 6).

Fig. 4. Angular velocity of the link x4 and their estimates

Fig. 5. Norm of the state estimation error ‖ek‖2
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7. Conclusions
The main objective of this paper was to develop efficient
approaches to designing observers for discrete-time Lip-
schitz non-linear systems. In particular, with the use of
the Lyapunov method, three different convergence criteria
were developed. The difference between these criteria lies
in the way the Lyapunov function is calculated. All these
techniques introduce a level of conservatism related to
the relative inaccuracy of a given technique. Based on the
achieved results, three different design procedures were
proposed. These procedures were developed in such a way
as the design problem boils down to solving a set of lin-
ear matrix inequalities or solving the generalized eigen-
value minimization problem under LMI constraints, re-
spectively. Experimental results confirm the effectiveness
of the proposed design procedures. In particular, it was
shown that the proposed approach can be effectively ap-
plied to design an observer for a flexible link robot. More-
over, the convergence rate provided by the proposed ob-
server is significantly higher that the one obtained with
the techniques presented in the literature.

Fig. 6. Residual z1,k = y1,k − ŷ1,k obtained with the UIO
(dashed line) and the conventional observer

Another objective of the paper was to show how to
apply the proposed techniques for the systems with un-
known inputs. This was realized with the use of a suitable
system transformation that converts the system descrip-
tion with an unknown input into the system description
without it. Experimental results confirm the effectiveness
of the proposed design procedures and show the potential
profits that can be achieved while applying the proposed
approach in the FDI scheme.

The author hopes that the presented results as well
as the developed MATLABr procedure will encourage
engineers to apply the proposed techniques in practice.

Appendix
The main objective of this appendix is to show the imple-
mentation details regarding design procedures described

in Section 4. Since the design procedures are very similar,
the attention is restricted to the implementation of one of
them, namely the approach described in Section 4.2. The
procedures presented in Sections 4.1 and 4.3 can easily be
implemented by a minor modification of the the source
code presented in this appendix.

Fig. 7. Residual z2,k = y2,k − ŷ2,k obtained with the UIO
(dashed line) and the conventional observer

In particular, the selection of K maximizing γ for
which the observer (6) is convergent is considered. Fig-
ure 8 presents the complete MATLABr source code that
can be used to solve such a problem. As has already been
mentioned in Section 4.1, the positivity of the right hand
side of (45) is required for the well-posedness of the task
and the applicability of the polynomial-time interior point
methods [36]. To tackle this problem, a simple remedy de-
scribed in [36] is employed. As a result, instead of using
(45), the following two LMIs are utilized:[

X − P CT LT − AT P
LC − PA −P

]
≺

[
Y 0
0 0

]
, (81)

and
Y ≺ λ(β + 1)I, (82)

where Y is a symmetric matrix.
Now, let us describe the function presented in Fig. 6.

The input and output parameters are A, C and γ, K,
respectively. In lines 2-4, all variables required in LMIs
(33), (43), (81) and (82) are set. LMIs (33) are defined
in lines 5-7, while lines 8-9 implement (43). Finally, LMIs
(81) and (82) are defined in lines 10-14. Since all LMIs are
defined, it is possible to find K maximizing γ for which
the observer (6) is convergent. As has been described in
Section 4.2, such an optimization task is formulated as a
generalized eigenvalue minimization problem [35,36]. The
code of lines 15-16 is employed to solve this problem. In
line 17, the correctness of the achieved solution is checked.
Finally, in lines 18-19 the maximum γ for which the ob-
server (6) is convergent and the corresponding K are cal-
culated.
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1. function [gamma,K]=GetGamma2(A,C)

2. n=size(A,1); m=size(C,1); setlmis([]);

3. P=lmivar(1,[n 1]); L=lmivar(2,[n m]); X=lmivar(1,[n 1]);

4. Y=lmivar(1,[n 1]); Beta=lmivar(1,[1 1]);

5. lmiterm([-1 1 1 P],1,1); lmiterm([-2 1 1 Beta],1,1);

6. lmiterm([-3 1 1 Beta],1,1);lmiterm([-3 2 2 Beta],1,1);

7. lmiterm([-3 2 1 P],1,1);

8. lmiterm([-4 1 1 X],1,1); lmiterm([-4 2 2 0],1);

9. lmiterm([-4 2 1 P],1,A); lmiterm([-4 2 1 L],-1,C);

10. lmiterm([5 1 1 P],-1,1); lmiterm([5 2 2 P],-1,1);

11. lmiterm([5 2 1 P],-1,A); lmiterm([5 2 1 L],1,C);

12. lmiterm([5 1 1 Y],-1,1); lmiterm([5 1 1 X],1,1);

13. lmiterm([6 1 1 Y],1,1); lmiterm([-6 1 1 Beta],1,1);

14. lmiterm([-6 1 1 0],1);

15. LMIss=getlmis;

16. [lambda, popt]=gevp(LMIss,1);

17. if lambda>0 error(’The problem cannot be solved’); end;

18. gamma=sqrt(-lambda); P=dec2mat(LMIss,popt,P);

19. L=dec2mat(LMIss,popt,L); K=inv(P)*L;

Fig. 8. MATLABr implementation of the design procedure
of Section 4.2
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