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Electrokinetics in random piezoelectric porous media
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Abstract. Macroscopic coefficients together with a Darcy law are obtained for porous piezoelectric medium with random, not
necessarily ergodic, distribution of pores in which a two-ionic electrolyte flows. Peculiarities of stochastic porosity are indicated.
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1. Introduction

In an analysis of flows through porous media one deals
both, with deterministic and stochastic media. Many
porous media, both natural ones as well as man-made
reveal random distribution of pores. The synthetic arti-
cle [1] provides an account of effective models of flows
through random rigid porous media (transport problem).
Electrokinetical phenomena in such media were studied
by Adler et al [2].

In this paper the problem of stationary flow of two-
ionic species electrolyte through random piezoelectric
porous media is studied, thus extending our earlier pa-
per [3], where spatial periodicity of porous medium was
assumed. To derive the macroscopic equations we use the
method od stochastic two-scale convergence in the mean
developed by Bourgeat et al. [4].

Solid phase was assumed to be piezoelectric since ac-
cording to [5] wet bone reveals piezoelectric properties, cf.
also [6]. We recall that a strong conviction prevails that
for electric effects in bone only streaming potentials are
responsible.

Macroscopic equations are given in Section 4 without
the assumption of ergodicity. In Section 5 we provide com-
ments on the case where ergodicity applies.

2. Description of random porous media
and the method of stochastic two-scale
convergence in the mean

Natural and man-made porous media usually possess
formidably complex microstructure, often hierarchical. In
this paper we shall not discuss hierarchical microstruc-
tures revealed, for instance by fractured porous media and
biological tissues like bone and soft tissue. However, re-
cently developed stochastic reiterated homogenisation en-
ables one to determine macroscopic properties of random
porous media with hierarchical architecture [7].

Let (Q, F, ) denote a probability space where F is a
complete o -algebra and g is the probabilistic measure.
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Assume that € is acted on by an n-dimensional dynam-
ical system T'(x) : Q — €, such that for each x € IR",
both T'(x) and T'(x)~! are measurable, and such that the
following conditions are satisfied: (a) 7'(0) is the identity
map on Q and for x1,x2 € R", T(x1+x%2) = T(x1)7T(x2);
(b) for each x € IR" and measurable set F € F,
w(T(x)"1F) = u(F), i.e. p is an invariant measure for T
(c) or each F' € F, the set {(x,w) € R" x Q|T(x)w € F'}
is a dx x dp measurable subset of IR™ x 2, where dx stands
for the Lebesgue measure on IR", cf. [4].

We observe that T'(x) ! = T(—x). The dynamical sys-
tem satisfying (a)-(c) is also called a measure preserving
flow. We introduce random homogeneous fields, starting
from the random variable f:

Fell(Q), fxw)=f(T(xw). (1)

We observe that f~ is also called the statistically homoge-
neous (i.e. stationary) random process. Statistical homo-
geneity means that two geometric points of the space are
statistically undistinguishable, or the statistical proper-
ties of the medium are invariant under the action of trans-
lation. Then we have a group {Ux|x € IR"} of isometries
on L?(Q) = L*(Q, F, 1) defined by

UE)f) (w) = f(T(x)w),

A dynamical system is said to be ergodic, if every invari-
ant function, i.e. satisfying f(7T(x)w) = f(w) is constant
almost everywhere in 2.

Examples of statistically homogeneous media are pro-
vided in [1, 7, §].

Let g € LL _(IR™), i.e. g is integrable on every measur-
able bounded set K C IR". A number M{g} is called the
mean value of g if

x € R",we,feL?N).

g(e™'x)dx = |K| M{g}.
K

lim
e—0

(2)

Here |K| denotes the Lebesgue measure of K. Of crucial
importance is the Birkhoff ergodic theorem which states
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that for f € L*(Q),a > 1,
J(I(

and M{f(T(x)w)}, considered as a function of w € €, is
invariant. Moreover, we have

(& / f(w)du = / M{fT©w)} . (4)

™ | M

Jw) = M{f(T(x)w)} weakly in Lit.  (3)

In particular, if the system T'(x) is ergodic, then

M{f(T(x)w)} = (f)

Let @ be a given, deterministic, bounded domain in IR"

and let G € F. We set
Gw) ={xe R"|T(x)w € G}, (5)

QE(UJ) = Q \ gs(w)7
G.(w) ={x € R"e"'x € G(w)}.

for almost all w € Q.

where

(6)

Such a definition of random domain Q. (w) is suitable for
theoretical considerations. In practice, the random sets
G(w) or G¢(w) have to be described more precisely, cf.
[1,7,9] and the references therein.

To carry out stochastic homogenisation, elements of
local stochastic calculus are needed. For more details, the
reader is referred to [1,4,7].

Anyway, one can define the stochastic gradient V,, f,
stochastic divergence div,,v, etc.

In the periodic case w is to be identified with local
variable y € Y, where Y is the so-called basic cell.

The set of all functions f € L2?(Q) invariant for
T (ie. f(T(x))=f,n — ae. on forallx e R") is a
closed subset of L?()) and denoted by I?(f2). We set
M?(Q) = [I?(Q)]*. We introduce a projection F
L?(Q) — L*(Q) determined by

i 1
(ENw) = Jim o /{W Fre
w — a.e w e

We have M2(Q) = ker E; moreover: (i) if f € L?(2) then
f € I*(Q) if and only if V,,f = 0, (ii) for any multi-index
a=(a1,...,ap),

I*p(T(x)w) = (D) (T(x)w), € D=(Q)

where 9% = 9l*l/92$" - 9z, (iii) let u € L?*(Q)",

n

v € L?(Q)", curl,u = 0, div,,v = 0, then

/Qu-vd,u:/QE(u)-E(v)d,u. (8)

Furthermore, if T is ergodic then (8) yields an extension
of the Hill-type relation:

/Qu-vdu:/gud,u~/ﬂvd,u. (9)

Now we are in a position to introduce the fundamental
notion.
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DEFINITION 1. A sequence {uf}.sq in L(Q X Q) is
said to stochastically two-scale converge in the mean to
u € L2(Q x Q) if for all ¢ € L(Q x )

lim uf (x, w)(x, T(e™'x)w)dxdu
e—0 QxQ

(10)
= / u(x, w)Y(x,w)dxdp.
QX0
The properties of stochastically two-scale convergent se-
quences like {u}.50 and {eVu®} are studied in [4], cf.
also [7]. These properties will be exploited in Section 4 of
the present paper. We also need to extend the mapping E
in order to cope with the so-called stochastic nonuniform
homogenisation. To this end for each y € IR" we define
the mapping T(y) : Q x Q — Q x Q by T(y)(x,w) =
(x,T(y)w). We observe that {T'(y)ly € RR"} is an n-
dimensional dynamical system on @ x €). Replacing Q,T
by (Q x Q,T) we extend (7) as follows

Ty(x,w) = Elg(x,))(w)

or

1

Bybxw) = tim o [ gx Ty ()
A—00 (2)\)” BB

Eg does not depend on w € Q (i - a.e.) provided that p

is ergodic for T'.

3. Equations of flow of electrolyte through
piezoelectric random porous medium

Let Q3 (w) = Q\ Q.(w) and Q%(w) = Q\ Q.(w), where
€ > 0 is a small parameter characterizing microstruc-
ture. We assume that the sets Q’(w) are connected. By
u®(t,x,w) and v (¢, x,w) we denote fields of displacement
in the piezoelectric phase Q¢(w) and velocity in the fluid-
ionic phase Q%(w), respectively. The pressure field, volume
density of positive (negative) ions, and the corresponding
current vectors are denoted by p®(t,x,w), ¢'T)° (t,x,w) ,
¢ (t,x,w) , and IH)=(t, x,w), respectively. Obviously,
t stands for the time variable, ¢ € [0, 7]. By ®°(¢,x,w) we
denote the electric potential field.

The set of equations for the fields u®, v, pc, &€, ¢(F)",
and J#)¢ assume the following form:
— in the solid piezoelectric phase Q%(w)

p*if = divy[a®e(u®) — s E(P)],
divg[mce(u®) 4 [e**E(®°)] =0

where
a®(x,w) = a(x, T (e 'x)w),
e (x,w) = 7(x, T(e'x)w),
€ (x,w) = €(x, T (e x)w),
Ex(®°) = —V,®°,
(WE(*)Ex(‘I’E)) =T ﬂ-lacijgjk'

ij
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Here (€55) = (€55 (x,w)) is the matrix of dielectric moduli
in the solid phase, e(u) stands for the small strain tensor,

and

ou
ot’
~in the fluid-ionic phase Q*(w)

1.1:

pIve = 2D (vF)

diveve =0,
divk (€“Ex(®°)) = ¢°,

g™ | o e e _ P o g(0)e
W—b—dlva =0, ¢ =q +q .

- vxpE + fg + qEEx(q)E) - Kvxqsa

(13)
More precisely, (12) holds in (0,7) x QZ(w) while (13)
in (0,7) x Q%(w). The scaling of the viscosity is typical
for the flow of Stokesian fluid through porous media [3,8].
The assumptions on the moduli a®, 7w® and €°¢ are similar
to those specified in [10] for microperiodic piezocompos-
ites. In our case it suffices to extend conditions (A;) and
(A2) given in [8] for elastic solid phase.
The conditions on the interface solid-fluid I'“(w) are
specified by the following relations and hold for ¢ € (0, 7):

[efn] =0, [®°] =0, [D°n]=
vi=u®, JHe.n=0, J)E.n=0, (14)
where
ae(u(t,x,w)) — T EL(P°(t,x,w))
ool i 00
—p°(t,x,w)I + e*ne(ve (t,x,w))
in (0,7) x Q(w);
me(u®(t,x,w)) + € Ex (P (t,x,w))
. in (0,7) x Q%(w)
D7 e x,w) (16)
in (0,7) x Q(w)
J(i—)a _ b(i i)sE (i)eva
- d(i)qu(i)E( )m q(O,T) x QL (w). (17)

Here I = (0;;) denotes the identity matrix. The inter-
face potential (¢-potential) (¢ may by assumed to be
constant. We consider a more general case where (¢ =
((x,T(e7'x)w). Since we are interested in the macro-
scopic equations, we do not consider boundary conditions
on 0Q.(w). For the sake of simplicity we assume homoge-
neous initial conditions for u®,ve, ®¢ and ¢(¥)".

4. Stochastic homogenisation
and macroscopic relations

Letting € tend to zero in the sense of stochastic two-
scale convergence in the mean we arrive at the homog-
enized equations. Without the assumptions of ergodicity
the fields involved still depend on w € €.
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Let F € Q and G = Q\ F; F is assumed to be
T-open and T-connected [1,7]. We observe that F' plays
the role of voids in local problems in the case of periodic
microstructure. We set ¥ = u(F), Q. = (0,7) x Q.

Selected results
(i) T is not necessarily ergodic:
Under physically plausible assumptions

{u®, Vxu®, ®°, VP, v}
stochastically two-scale converges in the mean to
(xa\ru, xo\rF(€ + Vxu), ®, (04 Vi®), xrv)
and, for instance

ue HY(Q, IX(Q)", € € LX(Q, M ()"

Here x4 denotes the characteristic function of set A.
The Darcy-Wiedemann law is nonlocal in time:

E[XlF<w2<V —0)(t,x,w)]
= [ A= )~ Vap — 9 — V)5

where f9 depends on (s,x) whilst ¢ and ® on (s,x,w);

q = ¢ + ¢7). The permeability matrix A = (Aij) is
defined by
Aij = Elxr(w)w(t,w) o], i,j=1,2,3.

Here e; stands for the j** standard basis vector of IR’.
The matrix A is symmetric and positive definite 7,8]. The
function w(? is a solution to the flow cell problem, given
by Egs. (4.14) in [7] cf. also [8].
(ii) T is ergodic on

The macroscopic fields u, p, ® and ¢ do not depend on
w.

The Darcy—Wiedemann law takes the form

u)(£,x)])
— Vxp — q¢Vx® — kVxq)(s,x)ds

v(t,x,w) —

/At—s

where A;; = (xr (W)W (t,w) - e;]).

The macroscopic moduli a”(x), etc., can be found by
solving cell local problems, being stochastic counterpart
of the local problems formulated in [3| for the periodic
case. For instance, we have

a0 (%) = (X0 £ () [@igpg + Qijmn€in, (BPY)
— WkijE]L:(R(pq))](X, w))

The macroscopic stress tensor (a(?)(t,x), x € Q is
expressed by

(@) (t,%) = (xa\r(@)a* @ (t,x,0))
+ <XF (w)aé(O) (t7 X, w)>

Explicit formula for (a(?))(¢,x) generalizes that given in

[4].
The stationary Darcy-Wiedemann law is obtained by
letting ¢ tend to infinity, cf. [11].
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5. Final remarks

For other models of flow of electrolytes through porous
media the reader is referred to [2,12,13]. Taking into con-
sideration FCD (fixed charge density) one has to im-
pose additional condition on the interface I'*(w) and the
electroneutrality condition. A challenging problem is to
use homogenisation methods for the case of finitely de-
formable skeleton, even hyperelastic. The permeability
would then necessarily depend on strains. Such a depen-
dence (nonlinear) is important even for small strain [14].
It is also important to include ion channels [15].

Appendix

Deterministic and random porous medium

Consider a fluid flow between two plane parallel surfaces,
in z direction, under the pressure gradient dp/dz. The sur-
faces are located at y = 0 and y = L, respectively, and the
channel extends in z and z directions infinitely. The veloc-
ity of flow varies with y and does not depend on x and z.
It is known, that the mean velocity of fluid (averaged over
the width L) is o = AL? where A = —(12n°)~'dp/dz and
n° = €21. The total flow of fluid along the region enclosed
between the planes y = 0 and y = L on a unit height of z
axis is Qo = AL3.

If the channel is divided into 2n identical subchan-
nels by the walls with vanishing thickness at planes y =
EL/2n,k = 1,2,--- ,2n — 1, the total output of all sys-
tem is Qo/(2n)? (the width of each subchannel is L/2n).
If half of channels is closed in such a way that only ev-
ery second channel is opened, the total output of system
is QQn = QO/(Bng) Iftn = L, Ql = Q0/87 if n = 2,
Q2 =Q0/32,if n =3, Q3 = Qo/T72.

Let us now consider a stochastic counterpart of the
system defined by the following conditions: (1) each sub-
channel can be opened or close with the probability 1/2;
and (2) if two open channels are adjacent, then the sep-
aration wall between them vanishes and they create one
channel with double width. If k open channels drop to-
gether, a new channel with the width kL/2n arises.

If a channel is divided into two subchannels, each
of width L/2, then the 4 situations are possible: open-
open, open-closed, closed-open, closed-closed. The out-
put is Q7 = Qo(1 + 1/8 + 1/8 + 0)/2%2 = 0.3125Q,. If
n=2 Q5= Qul70/(64 - 2%) = 0.166 Qq, and if n = 3,
Q5 = Qo 1412/(216 - 26) = 0.102 Q. Because of a nonlin-
ear dependence between output of channel and its width,
the random system has a larger efficiency than the deter-
ministic one with the same cross-section of open channels.
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