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Electrokinetics in random piezoelectric porous media
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Abstract. Macroscopic coefficients together with a Darcy law are obtained for porous piezoelectric medium with random, not
necessarily ergodic, distribution of pores in which a two-ionic electrolyte flows. Peculiarities of stochastic porosity are indicated.
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1. Introduction
In an analysis of flows through porous media one deals
both, with deterministic and stochastic media. Many
porous media, both natural ones as well as man-made
reveal random distribution of pores. The synthetic arti-
cle [1] provides an account of effective models of flows
through random rigid porous media (transport problem).
Electrokinetical phenomena in such media were studied
by Adler et al [2].

In this paper the problem of stationary flow of two-
ionic species electrolyte through random piezoelectric
porous media is studied, thus extending our earlier pa-
per [3], where spatial periodicity of porous medium was
assumed. To derive the macroscopic equations we use the
method od stochastic two-scale convergence in the mean
developed by Bourgeat et al. [4].

Solid phase was assumed to be piezoelectric since ac-
cording to [5] wet bone reveals piezoelectric properties, cf.
also [6]. We recall that a strong conviction prevails that
for electric effects in bone only streaming potentials are
responsible.

Macroscopic equations are given in Section 4 without
the assumption of ergodicity. In Section 5 we provide com-
ments on the case where ergodicity applies.

2. Description of random porous media
and the method of stochastic two-scale
convergence in the mean

Natural and man-made porous media usually possess
formidably complex microstructure, often hierarchical. In
this paper we shall not discuss hierarchical microstruc-
tures revealed, for instance by fractured porous media and
biological tissues like bone and soft tissue. However, re-
cently developed stochastic reiterated homogenisation en-
ables one to determine macroscopic properties of random
porous media with hierarchical architecture [7].

Let (Ω,F , µ) denote a probability space where F is a
complete σ -algebra and µ is the probabilistic measure.

Assume that Ω is acted on by an n-dimensional dynam-
ical system T (x) : Ω → Ω, such that for each x ∈ IRn,
both T (x) and T (x)−1 are measurable, and such that the
following conditions are satisfied: (a) T (0) is the identity
map on Ω and for x1,x2 ∈ IRn, T (x1+x2) = T (x1)T (x2);
(b) for each x ∈ IRn and measurable set F ∈ F ,
µ(T (x)−1F ) = µ(F ), i.e. µ is an invariant measure for T ;
(c) or each F ∈ F , the set {(x, ω) ∈ IRn × Ω|T (x)ω ∈ F}
is a dx×dµ measurable subset of IRn×Ω, where dx stands
for the Lebesgue measure on IRn, cf. [4].

We observe that T (x)−1 = T (−x). The dynamical sys-
tem satisfying (a)-(c) is also called a measure preserving
flow. We introduce random homogeneous fields, starting
from the random variable f :

f ∈ L1(Ω), f̃(x, ω) ≡ f(T (x)ω). (1)

We observe that f̃ is also called the statistically homoge-
neous (i.e. stationary) random process. Statistical homo-
geneity means that two geometric points of the space are
statistically undistinguishable, or the statistical proper-
ties of the medium are invariant under the action of trans-
lation. Then we have a group {Ux|x ∈ IRn} of isometries
on L2(Ω) = L2(Ω,F , µ) defined by

(U(x)f) (ω) = f (T (x)ω) , x ∈ IRn, ω ∈ Ω, f ∈ L2(Ω).

A dynamical system is said to be ergodic, if every invari-
ant function, i.e. satisfying f(T (x)ω) = f(ω) is constant
almost everywhere in Ω.

Examples of statistically homogeneous media are pro-
vided in [1, 7, 8].

Let g ∈ L1
loc(IR

n), i.e. g is integrable on every measur-
able bounded set K ⊂ IRn. A number M{g} is called the
mean value of g if

lim
ε→0

∫
K

g(ε−1x)dx = |K|M{g}. (2)

Here |K| denotes the Lebesgue measure of K. Of crucial
importance is the Birkhoff ergodic theorem which states
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that for f ∈ Lα(Ω), α ≥ 1,

f(T (
x
ε
)ω) ⇀ M{f(T (x)ω)} weakly in Lα

loc (3)

and M{f(T (x)ω)}, considered as a function of ω ∈ Ω, is
invariant. Moreover, we have

〈f〉 df=
∫

Ω

f(ω)dµ =
∫

Ω

M{f(T (x)ω)}dµ. (4)

In particular, if the system T (x) is ergodic, then

M{f(T (x)ω)} = 〈f〉 for almost all ω ∈ Ω.

Let Q be a given, deterministic, bounded domain in IRn

and let G ∈ F . We set

G(ω) = {x ∈ IRn|T (x)ω ∈ G}, (5)

Qε(ω) = Q \ Gε(ω), where

Gε(ω) = {x ∈ IRn|ε−1x ∈ G(ω)}.
(6)

Such a definition of random domain Qε(ω) is suitable for
theoretical considerations. In practice, the random sets
G(ω) or Gε(ω) have to be described more precisely, cf.
[1,7,9] and the references therein.

To carry out stochastic homogenisation, elements of
local stochastic calculus are needed. For more details, the
reader is referred to [1,4,7].

Anyway, one can define the stochastic gradient ∇ωf ,
stochastic divergence divωv, etc.

In the periodic case ω is to be identified with local
variable y ∈ Y , where Y is the so-called basic cell.

The set of all functions f ∈ L2(Ω) invariant for
T (i.e. f(T (x)) = f, µ − a.e. on Ω, for all x ∈ IRn) is a
closed subset of L2(Ω) and denoted by I2(Ω). We set
M2(Ω) = [I2(Ω)]⊥. We introduce a projection E :
L2(Ω) → L2(Ω) determined by

(Ef)(ω) = lim
λ→∞

1
(2λ)n

∫
[−λ,λ]n

f(T (x)ω)dx,

µ − a.e. ω ∈ Ω.

(7)

We have M2(Ω) = ker E; moreover: (i) if f ∈ L2(Ω) then
f ∈ I2(Ω) if and only if ∇ωf = 0, (ii) for any multi-index
α = (α1, . . . , αn),

∂αϕ(T (x)ω) = (Dαϕ)(T (x)ω), ϕ ∈ D∞(Ω)

where ∂α = ∂|α|/∂xα1
1 · · · ∂xαn

n , (iii) let u ∈ L2(Ω)n,
v ∈ L2(Ω)n, curlωu = 0, divωv = 0, then∫

Ω

u · v dµ =
∫

Ω

E(u) · E(v) dµ. (8)

Furthermore, if T is ergodic then (8) yields an extension
of the Hill-type relation:∫

Ω

u · v dµ =
∫

Ω

u dµ ·
∫

Ω

v dµ. (9)

Now we are in a position to introduce the fundamental
notion.

Definition 1. A sequence {uε}ε>0 in L(Q × Ω) is
said to stochastically two-scale converge in the mean to
u ∈ L2(Q × Ω) if for all ψ ∈ L(Q × Ω)

lim
ε→0

∫
Q×Ω

uε(x, ω)ψ(x, T (ε−1x)ω)dxdµ

=
∫

Q×Ω

u(x, ω)ψ(x, ω)dxdµ.

(10)

The properties of stochastically two-scale convergent se-
quences like {uε}ε>0 and {ε∇uε} are studied in [4], cf.
also [7]. These properties will be exploited in Section 4 of
the present paper. We also need to extend the mapping E
in order to cope with the so-called stochastic nonuniform
homogenisation. To this end for each y ∈ IRn we define
the mapping T̃ (y) : Q × Ω → Q × Ω by T̃ (y)(x, ω) =
(x, T (y)ω). We observe that {T̃ (y)|y ∈ IRn} is an n-
dimensional dynamical system on Q × Ω. Replacing Ω, T
by (Q × Ω, T̃ ) we extend (7) as follows

T̃ g(x, ω) = E[g(x, ·)](ω)

or

Ẽg(x, ω) = lim
λ→∞

1
(2λ)n

∫
[−λ,λ]n

g(x, T (y)ω)dy (11)

Eg̃ does not depend on ω ∈ Ω (µ - a.e.) provided that µ
is ergodic for T .

3. Equations of flow of electrolyte through
piezoelectric random porous medium

Let Qs
ε(ω) = Q \ Qε(ω) and Q`

ε(ω) = Q \ Q
s

ε(ω), where
ε > 0 is a small parameter characterizing microstruc-
ture. We assume that the sets Q`

ε(ω) are connected. By
uε(t,x, ω) and vε(t,x, ω) we denote fields of displacement
in the piezoelectric phase Qs

ε(ω) and velocity in the fluid-
ionic phase Q`

ε(ω), respectively. The pressure field, volume
density of positive (negative) ions, and the corresponding
current vectors are denoted by pε(t,x, ω), q(+)ε

(t,x, ω) ,
q(−)ε

(t,x, ω) , and J(±)ε(t,x, ω), respectively. Obviously,
t stands for the time variable, t ∈ [0, τ ]. By Φε(t,x, ω) we
denote the electric potential field.

The set of equations for the fields uε,vε, pε, Φε, q(±)ε

,
and J(±)ε assume the following form:
– in the solid piezoelectric phase Qs

ε(ω)

ρsüε = divx[aεe(uε) − πε(∗)E(Φε)],

divx[πεe(uε) + [εsεE(Φε)] = 0
(12)

where
aε(x, ω) = a(x, T (ε−1x)ω),

πε(x, ω) = π(x, T (ε−1x)ω),

εsε(x, ω) = ε(x, T (ε−1x)ω),

Ex(Φε) = −∇xΦε,(
πε(∗)Ex(Φε)

)
ij

= −πε
kij

∂Φε

∂xk
.
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Here
(
εsε
ij

)
=

(
εsε
ij (x, ω)

)
is the matrix of dielectric moduli

in the solid phase, e(u) stands for the small strain tensor,
and

u̇ =
∂u
∂t

;

– in the fluid-ionic phase Q`
ε(ω)

ρ`v̇ε = ε2η∆x(vε) −∇xpε + fg + qεEx(Φε) − κ∇xqε,

divxvε = 0,

divx

(
ε`εEx(Φε)

)
= qε,

∂q±

∂t
+ divxJ(±)ε = 0, qε = q(+)ε + q(−)ε.

(13)
More precisely, (12) holds in (0, τ) × Qs

ε(ω) while (13)
in (0, τ) × Q`

ε(ω). The scaling of the viscosity is typical
for the flow of Stokesian fluid through porous media [3,8].
The assumptions on the moduli aε, πε and εsε are similar
to those specified in [10] for microperiodic piezocompos-
ites. In our case it suffices to extend conditions (A1) and
(A2) given in [8] for elastic solid phase.

The conditions on the interface solid-fluid Γε(ω) are
specified by the following relations and hold for t ∈ (0, τ):

[[σεn]] = 0, [[Φε]] = 0, [[Dεn]] = ζε,

vε = u̇ε, J(+)ε · n = 0, J(−)ε · n = 0,
(14)

where

σε =


aεe(uε(t,x, ω)) − πε(∗)Ex(Φε(t,x, ω))

in (0, τ) × Qs
ε(ω),

−pε(t,x, ω)I + ε2ηe(vε(t,x, ω))

in (0, τ) × Q`
ε(ω);

(15)

Dε =


πεe(uε(t,x, ω)) + εsεEx(Φε(t,x, ω))

in (0, τ) × Qs
ε(ω),

ε`εEx(Φε(t,x, ω))

in (0, τ) × Q`
ε(ω);

(16)

J(±)ε = b(±)εq(±)εEx(Φε) + q(±)εvε

−d(±)∇xq(±)ε in (0, τ) × Q`
ε(ω).

(17)

Here I = (δij) denotes the identity matrix. The inter-
face potential (ζ-potential) ζε may by assumed to be
constant. We consider a more general case where ζε =
ζ(x, T (ε−1x)ω). Since we are interested in the macro-
scopic equations, we do not consider boundary conditions
on ∂Qε(ω). For the sake of simplicity we assume homoge-
neous initial conditions for uε,vε, Φε and q(±)ε

.

4. Stochastic homogenisation
and macroscopic relations

Letting ε tend to zero in the sense of stochastic two-
scale convergence in the mean we arrive at the homog-
enized equations. Without the assumptions of ergodicity
the fields involved still depend on ω ∈ Ω.

Let F ⊂ Ω and G = Ω \ F ; F is assumed to be
T -open and T -connected [1,7]. We observe that F plays
the role of voids in local problems in the case of periodic
microstructure. We set Ψ = µ(F ), Qτ = (0, τ) × Q.

Selected results
(i) T is not necessarily ergodic:

Under physically plausible assumptions

{uε,∇xuε, Φε,∇xΦε,vε}

stochastically two-scale converges in the mean to(
χΩ\F u, χΩ\F (ξ + ∇xu), Φ, (θ + ∇xΦ), χF v

)
and, for instance

u ∈ H1(Q, I2(Ω))n, ξ ∈ L2(Q,M2(Ω))n2
.

Here χA denotes the characteristic function of set A.
The Darcy-Wiedemann law is nonlocal in time:

Ẽ[χF (ω)(v − u̇)(t,x, ω)]

=
1
ρ`

∫ t

0

A(t − s, ω)(fg −∇xp − q∇xΦ − κ∇xq)(s,x)ds

where fg depends on (s,x) whilst q and Φ on (s,x, ω);
q = q(+) + q(−). The permeability matrix A = (Aij) is
defined by

Aij = E[χF (ω)ẇ(i)(t, ω) · ej ], i, j = 1, 2, 3.

Here ej stands for the jth standard basis vector of IR3.
The matrix A is symmetric and positive definite 7,8]. The
function w(i) is a solution to the flow cell problem, given
by Eqs. (4.14) in [7] cf. also [8].
(ii) T is ergodic on Ω:

The macroscopic fields u, p, Φ and q do not depend on
ω.

The Darcy-Wiedemann law takes the form

〈χF (ω)(v(t,x, ω) − u̇)(t,x)]〉

=
1
ρ`

∫ t

0

A(t − s)(fg −∇xp − q∇xΦ − κ∇xq)(s,x)ds

where Aij = 〈χF (ω)ẇ(i)(t, ω) · ej ]〉.
The macroscopic moduli ah(x), etc., can be found by

solving cell local problems, being stochastic counterpart
of the local problems formulated in [3] for the periodic
case. For instance, we have

ah
ijpq(x) = 〈χΩ\F (ω)[aijpq + aijmneω

mn(B(pq))

− πkijE
ω
k (R(pq))](x, ω)〉

The macroscopic stress tensor 〈σ(0)〉(t,x), x ∈ Q is
expressed by

〈σ(0)〉(t,x) = 〈χΩ\F (ω)σs(0)(t,x, ω)〉
+ 〈χF (ω)σ`(0)(t,x, ω)〉.

Explicit formula for 〈σ(0)〉(t,x) generalizes that given in
[4].

The stationary Darcy-Wiedemann law is obtained by
letting t tend to infinity, cf. [11].
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5. Final remarks
For other models of flow of electrolytes through porous
media the reader is referred to [2,12,13]. Taking into con-
sideration FCD (fixed charge density) one has to im-
pose additional condition on the interface Γε(ω) and the
electroneutrality condition. A challenging problem is to
use homogenisation methods for the case of finitely de-
formable skeleton, even hyperelastic. The permeability
would then necessarily depend on strains. Such a depen-
dence (nonlinear) is important even for small strain [14].
It is also important to include ion channels [15].

Appendix

Deterministic and random porous medium
Consider a fluid flow between two plane parallel surfaces,
in x direction, under the pressure gradient dp/dx. The sur-
faces are located at y = 0 and y = L, respectively, and the
channel extends in x and z directions infinitely. The veloc-
ity of flow varies with y and does not depend on x and z.
It is known, that the mean velocity of fluid (averaged over
the width L) is v̄ = AL2 where A = −(12ηε)−1dp/dx and
ηε = ε2η. The total flow of fluid along the region enclosed
between the planes y = 0 and y = L on a unit height of z
axis is Q0 = AL3.

If the channel is divided into 2n identical subchan-
nels by the walls with vanishing thickness at planes y =
kL/2n, k = 1, 2, · · · , 2n − 1, the total output of all sys-
tem is Q0/(2n)2 (the width of each subchannel is L/2n).
If half of channels is closed in such a way that only ev-
ery second channel is opened, the total output of system
is Q2n = Q0/(8n2). If n = 1, Q1 = Q0/8, if n = 2,
Q2 = Q0/32, if n = 3, Q3 = Q0/72.

Let us now consider a stochastic counterpart of the
system defined by the following conditions: (1) each sub-
channel can be opened or close with the probability 1/2;
and (2) if two open channels are adjacent, then the sep-
aration wall between them vanishes and they create one
channel with double width. If k open channels drop to-
gether, a new channel with the width kL/2n arises.

If a channel is divided into two subchannels, each
of width L/2, then the 4 situations are possible: open-
open, open-closed, closed-open, closed-closed. The out-
put is Qs

1 = Q0(1 + 1/8 + 1/8 + 0)/22 = 0.3125 Q0. If
n = 2, Qs

2 = Q0 170/(64 · 24) = 0.166Q0, and if n = 3,
Qs

3 = Q0 1412/(216 · 26) = 0.102Q0. Because of a nonlin-
ear dependence between output of channel and its width,
the random system has a larger efficiency than the deter-
ministic one with the same cross-section of open channels.

Acknowledgements. The authors were supported
through the project MIAB(EC), No QLK6-CT-1999-
02024, SPUB (KBN, Poland) and No 4T07A 00327 (MNiI,
Poland).

References

[1] J.J. Telega and W. Bielski, “Flow in random porous me-
dia: effective models”, Computers and Geotechnics 30(4),
271–88 (2003).

[2] P.M. Adler, J.F. Thovert, and S. Békri, “Local geometry
and macroscopic properties”, in Interfacial Electrokinet-
ics and Electrophoresis, pp. 35–51, edited by A. Delgado,
Springer-Verlag, Symbolic Computation, Tokyo, 2002.

[3] J.J. Telega and R. Wojnar. “Flow of electrolyte through
porous piezoelectric medium: macroscopic equations”,
Comptes Rendus de l’Académie des Sciences IIB 328(3),
225–30 (2000).

[4] A. Bourgeat, A. Mikelić, and S. Wright, “Stochastic two-
scale convergence in the mean”, Journal für die reine und
angewandte Mathematik 456 (1), 19–51 (1994).

[5] G.B. Reinish and A.S. Nowick, “Piezoelectric proper-
ties of bone as functions of moisture content”, Nature
253(5493), 626–7 (1975).

[6] J.J. Telega and R. Wojnar, “Piezoelectric effects in biolog-
ical tissues”, J. Theoretical and Applied Mechanics 40(3),
723–59 (2002).

[7] J.J. Telega and W. Bielski, “Stochastic homogenization
and macroscopic modelling of composites and the flow
through porous media”, Theoretical and Applied Me-
chanics Teorijska i Primenjena Mehanika 28–29, 337–77
(2002).

[8] J.J. Telega and W. Bielski, “Nonstationary flow of Stoke-
sian fluid through random porous medium with elastic
skeleton”, in: Poromechanics II, pp. 569–574, edited by
J.L. Auriault, C. Geindrau, P. Royer, J.F. Bloch, C.
Boutin and J. Lewandowska, Tokyo, 2002.

[9] P.M. Adler and J.F. Thovert, “Real porous media: local
geometry and macroscopic properties”, Applied Mechan-
ics Reviews 51(9), 537–585 (1998).

[10] J.J. Telega, “Piezoelectricity and homogenization. Appli-
cation to biomechanics”, in Continuum Models and Dis-
crete Systems, pp. 220–229 edited by G.A. Maugin, Long-
man, Essex, 1991.

[11] W. Bielski, J.J. Telega, and R. Wojnar, “Macroscopic
equations for nonstationary flow of Stokesian fluid
through porous elastic medium”, Archives of Mechanics
51(3–4), 243–274 (1999), (in Polish).

[12] W.Y. Gu, W.M. Lai, and V.C. Mow, “A mixture the-
ory for charged-hydrated soft tissues containing multi-
electrolytes: passive transport and swelling behaviors”, J.
Biomechanical Engineering 120(2), 169–80 (1998).

[13] J.M. Huyghe and J.D. Janssen, “Quadriphasic mechanics
of swelling incompressible porous media”, Int. J. Engi-
neering Science 35(8), 793–802 (1997).

[14] W.M. Lai, V.C. Mow, and V. Roth, “Effects of nonlin-
ear strain-dependent permeability and the rate of com-
pression on the stress behavior of articular cartilage”, J.
Biomechanical Engineering 103(2), 61–6 (1981).

[15] D.G. Levitt, “The use of streaming potential measure-
ments to characterize biological ion channels”, in Mem-
brane Transport and Renal Physiology, pp. 53–63, edited
by H.E. Layton and A.M. Weinstein, Springer, New York,
2002.

128 Bull. Pol. Ac.: Tech. 55(1) 2007


