
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 54, No. 4, 2006

Optimizing complex systems by intelligent evolution:
the LEMd method and case study

R.S. MICHALSKI∗

Machine Learning and Inference Laboratory, George Mason University, M.S.T.C8, Fairfax, VA, 22030, USA
Institute of Computer Science, Polish Academy of Sciences, 21 Ordona St., 01-237 Warszawa, Poland

Abstract. Most methods of evolutionary computation follow a Darwinian-type model that proceeds through random mutations or recombina-
tions of the genetic material1 and natural selection of individuals carried out according to the principle of the survival of the fittest. In such
a model, the creation of new individuals is not guided by any reasoning process or “external mind”, but rather by random or semi-random
changes. Recently, a new, non-Darwinian approach to evolutionary computation has been proposed, called Learnable Evolution Model (LEM),
in which the evolutionary process is guided by computational intelligence. In LEM, a new way of creating individuals is proposed, namely, by
hypothesis formation and instantiation. In numerous experiments, LEM has consistently and significantly outperformed compared conventional
Darwinian-type algorithms in terms of the evolution length (the number of fitness evaluations) in solving complex function optimization prob-
lems. Based on the LEM ideas, we developed a method, called LEMd, which is tailored to problems of optimizing very complex engineering
systems. This article provides a brief description of LEMd and its application to the development of a specialized system, ISHED, for the
optimization of evaporator designs in cooling systems. According to experts in cooling systems, ISHED-developed designs have matched or
outperformed the best human designs. These results and those from the experimental testing of learnable evolution on problems with hundreds
of variables suggest that LEMd may be an attractive new tool for optimizing very complex engineering systems.

Key words: engineering design optimization, evolutionary computation, function optimization, learnable evolution model, machine learning,
genetic algorithms.

1. Introduction

A popular method for optimizing complex engineering designs
is to apply evolutionary computation, because it can be imple-
mented relatively easily and is applicable to a very wide range
of problems. Most methods of evolutionary computation are
based on the Darwinian model of evolution in which new indi-
viduals (in this case, designs) are generated by semi-random
change operators, such as mutations and/or recombinations,
and are selected for the next generation according to some
variant of the survival of the fittest principle. The Darwinian-
type of evolutionary computation is not guided by any “exter-
nal mind” [1], and does not involve much domain knowledge.
Although it has found many engineering applications (e.g., [2–
6]), it is not very efficient, because it is basically an unguided
trial-and -error search.

This paper briefly describes a new approach to engineer-
ing applications of evolutionary computation that is based on
Learnable Evolution Model (LEM), a form of evolutionary
process that is guided by computational intelligence, specifi-
cally, by machine learning [7]. In contrast to Darwinian-type
evolutionary algorithms that model biological evolution, LEM
attempts to model intellectual evolution – an evolution of hu-
man artifacts [7]. In such intellectual evolution, new genera-
tions of solutions (designs, systems, artifacts, etc.) are created

through a reasoning process that involves an analysis of ad-
vantages and disadvantages of past solutions. This analysis is
done by engineers or designers, and thus engages human intel-
ligence.

In LEM, such an analysis is done by a machine learning
program that looks at the high-fitness and low-fitness individ-
uals (solutions), and applies a machine learning program to
create a general hypothesis that differentiates between the two
groups. A new population of solutions is created by instantiat-
ing the hypothesis in different ways. Thus, unlike Darwinian-
type evolutionary algorithms that create new candidate solu-
tions by random mutations and/or recombinations, the central
new idea in LEM is to generate new solutions by hypothesis
formation and instantiation.

In all experiments performed so far, LEM has significantly
and consistently outperformed all tested Darwinian-type algo-
rithms in terms of evolution length, measured by the number
of fitness function evaluations needed to achieve a desired so-
lution. Moreover, the LEM advantage has increased with the
complexity of the problem, as measured by the number of vari-
ables to optimize [8]. These results suggest that LEM may be
particularly useful for optimizing very complex designs, with
hundreds of controllable variables.

The following sections briefly describe LEMd, a method
that tailors LEM to problems of optimizing complex designs,

∗e-mail: michalski@mli.gmu.edu
1The idea that small random genetic mutations are fully sufficient for producing innovation observed in nature has been recently questioned by some scientists.

To resolve this problem in Darwinian model of evolution, a new theory was proposed, called “facilitated variation”, which treats the individual organism not as a
passive object of natural selection but an active player in evolution [1].

505



R.S. Michalski

and then describes a specialized program, ISHED, that applies
LEMd to the optimization of evaporators in cooling systems.
The performance of ISHED is illustrated by an excerpt from a
log of a program run.

2. An overview of the LEMd method
2.1. Underlying assumptions.The hypothesis generation
and instantiation in LEM can be viewed as “intelligent opera-
tors” because they do not make purely random or semi-random
design changes, but rather innovate designs using hypotheses
created by machine learning. The application of these opera-
tors has proven to shorten the evolution length in every experi-
ment that compared LEM with Darwinian-type of evolutionary
computation [8]. It should be noted, however, that these op-
erators are more computationally complex than conventional
change operators, such as mutations and recombinations. Thus,
their application in evolutionary computation creates a tradeoff
between the evolution length and the complexity of computa-
tion.

Because of this tradeoff, and because neither conventional
nor machine learning-based operators can guarantee that the
evolutionary process will always converge to the global opti-
mum without backtracking, it is desirable to combine the two
types of operators in a way that will lead to the maximum effi-
ciency of the evolutionary design process. The above objective
underlies the LEMd method for applying learnable evolution
to the optimization of complex engineering designs.

To achieve this objective, LEMd integrates two modes of
operation, Learning Mode and Probing Mode. Learning Mode
creates new designs through hypothesis generation and instan-
tiation, while Probing Mode creates them by applying expert-
suggested design modification (DM) operators tailored to the
specific design problem. Expert-suggested operators are used
because applying random mutations and recombinations to
complex systems will hardly produce improvements over any
reasonable amount of time. DM operators represent experts’
knowledge as to the types of system modifications that are
meaningful and may plausibly improve the design.

2.2. Description of the LEMd method. An underlying as-
sumption for applying LEMd, as for any evolutionary compu-
tation method, is that there exists a mechanism for evaluating
the quality of candidate designs, for example, a simulator of
the system being designed. Such an evaluation does not have
to assign a specific quality value to a design, but must be able
at least to rank the designs in the population of candidates.

A flowchart of the LEMd method is shown in Fig. 1. The
first step of the method is to create an initial population of de-
signs, which may include already existing designs, designs ob-
tained through a previous execution of LEMd, randomly gen-
erated designs, or a combination of the above. The next step is
to select a mode of operation, either Learning Mode or Prob-
ing Mode. The choice of the initial mode is not particularly
important; it is made to best suit a given application domain.

Learning mode. In this mode, at each step of evolution, a pop-
ulation of designs is divided into three disjoint groups based

on their fitness: H-group containing designs that score highest
on the fitness evaluation function, L-group containing designs
that score lowest, and the rest. The partition of the population
into these groups can be done using different methods. One
method, fitness-based, selects for the H-group designs with fit-
ness above a given upper threshold, and for the L-group de-
signs with fitness below a given lower threshold. The second
method, population-based, selects high-scoring designs for the
H-group so that they constitute a predefined percentage of the
designs, and the low-scoring designs for the L-group so that
they also constitute a predefined percentage of the designs [7].
The collection of designs from which H- and L-groups are se-
lected can be the current population, or a union of the current
and selected past populations. The latter is another distinguish-
ing feature of LEMd, as compared to Darwinian-type evolu-
tionary computation, as it allows a new population to be gen-
erated on the basis not only of the current population, but also
of past populations.

The selected H-group and L-group are then supplied to
a learning program that induces a general hypothesis distin-
guishing between these groups. For this purpose, LEMd em-
ploys an AQ-type rule learner [9, 10], which is particularly
suitable for learnable evolution due to the use of attributional
calculus as the hypothesis representation language [7,11]. The
learned hypothesis is in the form of a set of attributional rules
[11]. An attributional rule is a logical conjunction of attribu-
tional conditions.

For illustration, here are examples of such conditions with
their interpretations:

[length = 2m] (the length of the entity is 2 m)

[color = red or blue] (the color is red or blue)

[weight =5 . . . 8 kg] (the weight is between 5 and 8 kg)

[width & height < 1m] (both the width and the height are
below 1m)

[width > height] (the width is greater than height)

[count(X, EQ 2) = 3] (the number of attributes from X
that have value 2 is 3)

[climate: warm & humid] (the climate is warm and humid)

The last example illustrates the use of a compound attribute
“climate” whose values are taken from the Cartesian product of
the domains of constituent attributes “temperature” and “hu-
midity” [11]. As one can see from the examples above, at-
tributional conditions have greater expressive power than the
conditions typically used in decision rules, which are limited
to the form «attribute-relation-value». They are, however, easy
to understand and interpret in natural language. Because rules
are conjunctions of such conditions, they are also easy to un-
derstand and interpret. Attributional rules can also be easily
instantiated into examples (designs), especially in the case of
rules with the first four types of conditions above. This feature
is particularly important for LEMd, because in Learning Mode
new designs are created by instantiating such rules.

Each attributional rule in a hypothesis that differentiates
the H-group from the L-group describes a subset of the search
space that likely contains an optimum. Because such a hypoth-

506 Bull. Pol. Ac.: Tech. 54(4) 2006



Optimizing complex systems by intelligent evolution: the LEMd method and case study

esis may consist of a number of rules, the LEMd method may
simultaneously pursue different optima in a multimodal fitness
function landscape.

After a hypothesis is learned, its rules are instantiated in
different ways to create candidate designs that satisfy the given
constrains. The newly created designs compete with each other
in terms of their fitness with previously generated designs for
inclusion in the new parent population. The fitness is deter-
mined by a design evaluation method, which will typically in-
volve running a design simulator.

Fig. 1. A flowchart of the LEMd method

Probing mode. In this mode, LEMd applies problem-
dependent design modification (DM) operators that make fea-
sible and plausibly useful changes to the proposed designs,
according to expert-provided domain knowledge (see Section
3.2). Before DM operators are applied to a population, the pop-
ulation is transformed into a new population by selecting each
design with a probability proportional to its fitness (propor-
tional selection). Thus, high fitness designs may be selected
several times to be parent designs for the next generation, and
some low fitness designs may not be selected at all.

Mode and LEMd termination criteria. Each mode of LEMd
runs until a mode termination criterion is met, and then control

switches to the other mode. The mode termination criterion is
satisfied if there is insufficient improvement to the fitness of
the best candidate design in the population or to the average
fitness of the population as a whole after a given number of
iterations. Parameters of the mode termination criterion have
default values that can be changed by the user. LEMd termi-
nates when the obtained best design is satisfactory or when it
completes an assumed number of fitness evaluations or, more
generally, exhausts the allocated computational resources.

The first step in applying LEMd to a specific design prob-
lem is to define a suitable representation for designs. Such a
representation needs to be in the form of a list of attribute val-
ues. In LEMd, the attributes can be of different types, such
as nominal (the domain is an unordered set, e.g., the type of
material), structured (the domain is a hierarchically ordered
set, e.g., a hierarchy of shapes), rank (the domain is discrete,
finite and totally ordered, e.g., “size” discretized into small,
medium and large), cyclic (like rank, but the domain is cycli-
cally ordered; e.g., seasons of the year), interval (the domain
is a measurement with an arbitrary zero, e.g. “temperature in
Celsius degrees”), ratio (measurements for which “0” is not
arbitrary, such as “weight”), and absolute (numerical counts of
distinct elements). LEMd’s capability to use different types of
attributes in its evolutionary process allows one to tailor it to
a wide range of applications, without need of defining ad-hoc
encoding.

The next step is to specify and implement plausible design
modification operators and constraints imposed on the accept-
able designs. Subsequent steps are to create an initial, suffi-
ciently diverse population of designs and to define termination
criteria for both probing and learning modes of operation, and
for the entire LEMd run.

Finally, a hypothesis instantiation algorithm must be devel-
oped that will produce designs satisfying design constraints.
The process of instantiating the learned hypothesis, which is in
the form of a set of attributional rules [11], proceeds as follows:

1. Rules are arranged in descending order of their significance,
which is defined according to the problem at hand. The de-
fault measure of significance is the sum of the fitness values
of the designs in the H-group that satisfy that rule. Each rule
is instantiated in different ways to produce different designs.
A specific design is created by assigning values to attributes
in a rule that satisfy that rule and the design constraints. At-
tributes not present in the rule are assigned values according
to some value-assigning method. The default method is to
assign to such attributes values from a randomly selected
H-group design. The number of designs produced from a
rule is proportional to the rule’s significance, but not smaller
than i-min, a program parameter. This method is called a
proportional instantiation.

2. The reason for the i-min parameter is to assure that even low
significant rules will have a chance to produce an offspring.
Because each rule delineates a subarea in the search space,
i-min enforces parallel exploration in several subareas of the
search space. This feature is particularly important for opti-
mization problems with a multi-modal fitness landscape.

Bull. Pol. Ac.: Tech. 54(4) 2006 507



R.S. Michalski

3. The total number of new designs generated is Population-
size - elite-size, where elite-size is a parameter controlling
the size of the elite group, a collection of the best designs
found so far that is automatically accepted into the new par-
ent population.

New designs created by either Learning or Probing Mode are
evaluated to determine their fitness. This evaluation can be
done by running a design simulator, by a subjective judgment
of an expert or group of experts, or by some other method.
Subsequently, the LEMd termination condition is tested, and
if satisfied, the program ends; otherwise, the population of de-
signs with their fitness values is passed to the “Select Mode of
Operation” module to start the next iteration.

If the control passes to Probing Mode, a new parent pop-
ulation is assembled from the best past and newly generated
designs using one of the selection methods developed in the
field of evolutionary computation (e.g., proportional selection,
tournament, etc.).

3. An example of LEMd application: optimizing
evaporator designs

3.1. Problem description. This section briefly describes an
application of LEMd to the development of a specialized sys-
tem, ISHED, for optimizing evaporators in cooling systems.
This is a complex engineering problem of great practical im-
portance because of the widespread use of evaporators in air
conditioners and refrigerators. This study has been conducted
in consultation with experts on heat exchanger design, dr. Piotr
Domanski and his collaborators from the National Institute of
Standards and Technology (NIST).

To explain the problem, let us briefly describe how an evap-
orator works in an air conditioning unit [12]. The refrigerant
flows in a loop through an air conditioner. It enters, in cool
liquid form, an array of parallel tubes that constitutes an evap-
orator. When it comes into contact with the warmer interior
air that is being pushed through the evaporator, it heats up and
evaporates, but the air cools down. Figure 2 shows an example
of an evaporator with tubes arranged into 16 columns and 3
rows.

The configuration of the tubes through which refrigerant
flows affects both the temperature of the refrigerant when it
reaches any given tube, and the air temperature after the air
passes over the tube. The amount of heat transfer the air con-
ditioner provides depends on the heat transfer of its evapora-
tor’s tubes and the efficiency of its condenser in transferring
heat from the refrigerant to the outside air. It also depends on
the distribution of the velocities of the air passing through the
evaporator (see the graph in Fig. 2).

The problem of optimizing an evaporator lies in how to
connect the tubes and how to direct the flow of the refrigerant
through them so that for the given technical and environmental
conditions, the capacity of the evaporator will be maximized.
The capacity is measured by the amount of heat transfer (in
kW) per unit of time. Technical conditions include the size
of the evaporator (the number of tubes and their length and
diameter), material of the tubes, and the type of refrigerant.

Environmental conditions include the inside and outside tem-
peratures and the airflow distribution. The optimization space
is defined by the variables defining how tubes are connected
in the evaporator between inlets (input tubes) and outlets (out-
put tubes). In a moderate-sized evaporator, such as the one in
Fig. 2, each of the 48 tubes can in theory receive its refrigerant
from any of the other 47 tubes, or from the flow of refrigerant
into the evaporator. Thus, a naive search of the design space
would have to consider4848 potential designs. The vast ma-
jority of these designs are infeasible because of the problem
constraints, but even if it were possible to search only through
potentially feasible designs, the search space would still be or-
ders of magnitude too large for any exhaustive search.

Fig. 2. An example of a16× 3 evaporator

In selecting a path for the refrigerant to flow through an
evaporator of a given size, real-world constraints limit the set
of feasible designs. Based on discussions with a domain expert,
several constraints were built into the ISHED program.

3.2. The ISHED system.As mentioned earlier, ISHED ap-
plies LEMd to the specific problem of optimizing evaporators
in air-conditioning units. The initial population is of designs
may be partially specified by an expert, and the rest is gener-
ated randomly. The proportion of designs to be generated by
the random process with specific numbers of inlets and outlets
is specified within the ISHED program based on expert advice,
and is dependent on the total number of tubes in the evaporator
being optimized (smaller evaporators usually function better
with fewer inlets and outlets).

The structure of an evaporator is represented by a sequence
of integer values. Each value indicates the number of the tube
that is the source of each tube’s refrigerant (tubes are numbered
left-to-right, starting with the first row). For the attributional
representation used by the learning program, the type of a tube
is encoded in the sequence in the following way:

1. If the tube in thekth position is an inlet, it is indicated by
symbol I.

508 Bull. Pol. Ac.: Tech. 54(4) 2006



Optimizing complex systems by intelligent evolution: the LEMd method and case study

2. Other types of tubes are indicated by the number of occur-
rences of the valuek in the string. Ifk doesn’t appear at all,
the tube is an outlet. Ifk appears twice, the tube is a split
location. Ifk appears exactly once, the tube is a regular in-
terior one.

For example, consider the following structure:
<17 1 2 3 4 5 6 7 8 9 12 13 29 15 31 I 18 33 20 36 22 38 24 40
26 42 11 2 7 45 14 47 16 34 35 19 37 21 39 23 41 25 43 44 28
46 30 48 32>

In this structure, the tube 17 provides refrigerant for tube 1;
tube 1 provides refrigerant for tube 2, etc. Tube 16 is the inlet
(“I” in the 16th position). Tube 10 is the outlet (there are no
10s in the string). There are no splits in the structure (because
all other numbers between 1 and 48 appear exactly once). All
other tubes are regular ones.

In experiments, the initial population of designs (defining
structures of evaporators) was usually a combination of exist-
ing designs and random designs. The quality of designs, mea-
sured by their capacity, is determined by a evaporator simulator
developed at the National Institute of Standards and Technol-
ogy [13]. The capacity of a design indicates its energy effi-
ciency.

Running the simulator is the most time-consuming part
of the evolutionary design process. A single evaluation may
take on the order of a few seconds, which is a relatively long
time, given that a typical optimization process may take tens
of thousands or more evaluations. Therefore, the evolutionary
speedup provided by learnable evolution [8] is particularly ad-
vantageous for this application.

For Probing Mode, the following design modification op-
erators have been developed on the basis of an expert’s advice:

– FORK adds a fork in a path.
– BREAK breaks a path at a given point, creating a new inlet

and a new outlet location at the tubes following and preced-
ing the break, respectively.

– COMBINE combines two separate unforked paths into a
single, forked one.

– INSERT combines two separate unforked paths into a sin-
gle, unforked one.

– MOVE-FORK moves a fork in a path up or down to an ear-
lier or later point on the path.

– SWAP interchanges the position of two successive tubes in
the refrigerant path.

– INTERCROSS, given break points on two separate refrig-
erant paths, exchanges the portions of the paths follow-
ing the breakpoints; this operator is analogous to a genetic
crossover.

– NEW-CONNECTION that assigns a new source to the
operand tube.

To illustrate an operator, Fig. 3 presents graphically the func-
tion of the COMBINE operator.

In Learning Mode, given a population of designs and their
evaluations, ISHED determines the H-group and the L- group.
This is done using a fitness-based method that arranges design

fitnesses from the highest value to the lowest (the range of val-
ues is called the fitness range), and selects a given percentage
of the top of the fitness range (specified by a program param-
eter) for the H-group, and a given percentage of the bottom of
the fitness range (defined by a parameter) for the L-group [7].

In ISHED, the H- and L-groups are passed as positive and
negative examples to the AQ19 rule learning program [9]. The
program outputs a general hypothesis distinguishing between
these groups that is in the form of a set of attributional rules.

Fig. 3. The ISHED COMBINE(7,4) DM operator

Each rule in the hypothesis is then instantiated to a set of
specific designs by randomly assigning to each attribute differ-
ent values satisfying the rule. The attributes not present in the
rule are assigned values according to the default LEMd method
(values from a randomly selected H-group design). The num-
ber of designs created from each rule is determined by pro-
portional instantiation (the number of created designs is pro-
portional to the rule significance). The total number of designs
generated by hypothesis instantiation is the assumed popula-
tion size minus the size of the H-group, because the designs
in latter group are considered elite designs, and automatically
included as candidates for the new population.

The final step creates feasible designs that satisfy the con-
straints on a heat exchanger design. This process takes into
consideration the geometry of the inlet and outlet points.
The need for satisfying the constraints may cause a decrease
of diversity in the instantiated designs, which in turn may
decrease Learning Mode performance. When this happens,
ISHED switches to Probing Mode.

To increase the diversity of a population of designs in
a tightly constrained domain, given a set of inlet and outlet
points, ISHED determines the physical relationships among
these points in the design (i.e., which are to the left of, to the
right of, above, below, in the same column, or in the same row
as others), and selects an instantiation strategy accordingly.
Generally, a divide-and-conquer method is used, in which the
evaporator is divided into regions based on the locations of the
key tubes.

Both evolutionary modes use elitist strategy, that is, keep
track of the best-performing designs. In Probing Mode, the
elite-size best performing individuals thus far automatically
become the basis for the first members of the new population.
In Learning Mode, as mentioned earlier, all members of the H-
group comprise the elite group that is always included in the
next generation’s population.

Bull. Pol. Ac.: Tech. 54(4) 2006 509



R.S. Michalski

Fig. 4. An excerpt from the log of an ISHED run

3.3. An example of an ISHED design optimization process.
Testing experiments with ISHED were performed with differ-
ent settings of design parameters that define the type of refrig-
erant, evaporator shape and size, and airflow patterns (uniform
or non-uniform). Industrially available air conditioning sys-
tems typically perform very efficiently as long as the airflow
is fairly uniform. When the airflow is not uniform, their effi-
ciency drops off significantly. The side of the unit over which
more air flows has a heavier cooling burden, so to achieve the
best performance it needs to carry more and colder refriger-
ant. This factor has not been usually taken into consideration
by manufacturers of evaporators; therefore, in the case of non-

uniform flow, commercial evaporators tend not to be very effi-
cient.

The initial experiments with ISHED concerned designing
evaporators of common sizes under the assumption of a fairly
uniform airflow pattern. In these experiments, ISHED pro-
duced designs that were comparable to the industry standard.
When ISHED worked for many generations in Probing Mode,
some of its designs would tend to have chaotic intertube con-
nections. This was because the simulator did not sufficiently
reflect the detrimental effect such connections have.

The above problem was partially alleviated by tightening
restrictions on the length of permissible tube-to-tube connec-

510 Bull. Pol. Ac.: Tech. 54(4) 2006



Optimizing complex systems by intelligent evolution: the LEMd method and case study

tions, and by using existing tools for smoothing some of the
connections without significantly decreasing the evaporator’s
capacity estimated by the simulator [12]. To illustrate ISHED’s
performance, Figure 4 presents an abbreviated log of one run.

This run was executed in a verbose mode, which means
that its log details every design tested, every operator applied,
and every hypothesis learned. The figure only shows a very
small sample of the full output that even in this small experi-
ment would take up many pages. Numbers in parentheses on
the right hand side are pointers to the explanations provided in
the text below. In addition to these explanations, some com-
ments to the log were added in italics.

Each structure shown in Fig. 4 is accompanied by its capac-
ity estimated by the simulator. The first part of the log, denoted
by (1), provides a summary of the ISHED parameters used in
the given run. In this run, ISHED was creating evaporator de-
signs consisting of 3 rows of 16 tubes. Over 50 generations, it
evolved a population of 15 designs.

The Mode Persistence parameters, Learning-persistence
and Probing-Persistence instructed ISHED to switch from
Probing to Learning Mode after two consecutive generations
failed to improve the best design in the population, and to
switch back to Probing Mode after one Learning Mode gener-
ation did not make such an improvement. The Operator Persis-
tence parameter was set to instruct ISHED to apply a specific
design modification operator in Probing Mode up to 5 times
(with different randomly selected operands) before giving up
on this operator, and choosing another design modification op-
erator.

The log shows designs in the initial population, which was
generated randomly in this case, and the capacity of the designs
estimated by the simulator. At the step denoted by (2), two of
the 15 generated individuals are shown, specifically, the third
and eighth design in the population, whose capacities were de-
termined to be 5.5376 and 5.2009, respectively. From this pop-
ulation, the seeds for the next generation, with the exception
of the first one, were selected probabilistically, based upon the
capacities of the individuals of the current population. The first
design was included in the elite, because it was the best design
obtained so far.

At (3), the log shows that the first seven of the fifteen de-
signs in Generation 1 would be built from individuals 0.3, 0.2,
0.3, 0.7, 0.9, 0.3, 0.9. As shown at (4), each seed for the new
population then had a design modifying operator applied to
it as follows: Individual 1.1 was created by applying operator
NS(23,39) (change the source of refrigerant for tube 23 from
whatever it was to tube 39) to individual 0.3; individual 1.2
was created by applying operator SWAP(8) (swap the positions
of the two tubes preceding tube 8) to individual 0.2; etc. It is
shown at (5) that individual 1.13, generated by applying oper-
ator SWAP(29) to design 0.8, had a capacity of 5.2093.

After progress had stalled, ISHED switched to Learning
Mode, and discovered a rule (6) that indicated a pattern in
which high-performing designs consisted of an outlet at po-
sition 10, an inlet at position 16, and interior tubes at all other
positions. The learned rules were instantiated to become mem-
bers of the new population, such as Structure 5.1 (7).

The run continued in this way, and at the halfway point,
there was little progress in evolving better designs (8). But by
the run’s end (9), a significant leap in design quality has oc-
curred. While the best design in the initial population had a
capacity of 5.5376 kW, the best design after 40 generations in
running ISHED had a capacity of 6.3686 kW, which represents
a 15% improvement. This result illustrates the ISHED capabil-
ity for improving evaporator designs.

3.4. Summary of the experiments.Experiments with
ISHED have proven its ability to improve the initial designs,
sometimes very significantly. With few preprogrammed as-
sumptions, the program was able to evolve designs consistent
with the given technical and environmental conditions and con-
straints. When faced with uniform airflows, designs roughly
symmetric were favored, in the case of non-uniform airflow,
the designs were less symmetric to compensate for such a flow.
As a result, ISHED designs for non-uniform flows were evalu-
ated by experts as superior to the best human designs.

4. Related research

To the author’s best knowledge, LEMd represents a novel
methodology for optimizing complex engineering systems
through evolutionary computation. It is based on Learnable
Evolution Model (LEM) that attempts to model evolution
guided by an “intelligent mind” rather than evolution proceed-
ing randomly or semi-randomly. Somewhat in sprit to LEMd
are cultural evolution algorithms that execute a process of dual
inheritance (e.g. [14,15]). Unlike LEMd, cultural evolution
works at two levels, a “micro-evolutionary level” that involves
individuals described by traits and modified by conventional
evolutionary operators, and a “macro-evolutionary” level, in
which individuals generate “mappa” representing generalized
beliefs that are used to modify the performance of individu-
als in the population. LEMd is significantly different from cul-
tural evolution algorithms as it integrates two modes of evolu-
ationary computation, learning and probing, and its learning
mode is different because it uses both high-performing and
low-performing individuals. It also employs a completely dif-
ferent method of learning and representing the results.

In its general objective, somewhat related to LEMd is a
“generic” evolutionary design system GADES [3,4] that aims
to serve as a method for solving diverse design problems.
The system employs a conventional Darwinian evolutionary
method, but allows the user to specify the nature of the genetic
operators to apply and the representation of individuals in the
population. LEMd also has such capabilities, but in addition in-
cludes an entirely new form of generating individuals provided
by Learning Mode and by integrating it with Probing Mode.

Another approach that extends the traditional Darwinian
approach has been implemented in GADO [16], which also
aims at optimizing complex engineering systems. It differs
from conventional genetic algorithms by using five different
crossover operators, three of which, crossover, double line
crossover and guided crossover, were introduced in GADO.
However, unlike LEMd, GADO does not have the ability to

Bull. Pol. Ac.: Tech. 54(4) 2006 511



R.S. Michalski

guide evolution by general hypotheses created by a learning
system.

Another extension of conventional Darwinian-type algo-
rithms is represented by memetic algorithms (e.g., [17]). These
are global-local hybrid algorithms that combine conventional
evolutionary algorithms with local search methods to improve
solutions. They have been applied to many real-world prob-
lems and have been the subject of intensive studies. They dif-
fer significantly from LEMd in that they do not apply learning
methods to guide evolutionary computation.

5. Conclusions

The presented LEMd method is based on the Learnable Evo-
lution Model, a non-Darwinian form of evolutionary compu-
tation. Unlike most methods of evolutionary computation that
draw inspiration from natural evolution (the evolution of living
organisms), LEM attempts to model intellectual evolution that
has governed the development of human artifacts, such as auto-
mobiles, computers, airplanes, etc. In such evolution, the gen-
eration of new populations of artifacts results from the analysis
of the advantages and disadvantages of past populations by a
human mind.

The evolutionary process performed by LEMd is called
“intelligent” because it is guided by computational intelli-
gence, partially by machine learning and partially by expert
domain knowledge. Experiments with ISHED applying LEMd
to the problem of optimizing evaporators in heat exchangers
indicate that it offers a new and effective tool for optimizing
very complex systems when neither conventional optimization
methods nor Darwinian-type evolutionary algorithms are very
effective.

ISHED represents an initial implementation of the LEMd
method for the task of optimizing evaporators in heat exchang-
ers, and has shown promising results. This first implementa-
tion suffers, however, from several limitations. It is not capable
of an orderly instantiation of all possible design specifications
consisting of three or more inlets or outlets. The complexity
of the instantiation process makes it currently difficult to in-
ject a desirable amount of diversity into the process, although
a new version of ISHED under development indicates strong
improvement in both these areas. Experiments revealed also
an ISHED weakness regarding an occasional lack of evolu-
tionary advancement in seeded populations. There are several
ways to work around the problem, such as making short, se-
quential runs of ISHED that build upon each other’s results.
Further research will explore more thoroughly the nature of
the experienced problems and their possible solutions.

The LEMd method is at an early stage of development, and
poses many interesting new research problems. They include a
theoretical and experimental investigation of the method, test-
ing it in different application domains, and the development of
efficient methods for applying LEMd to optimization problems
with very complex constraints and dynamic landscapes.

Despite its limitations, LEMd offers a new method for op-
timizing complex engineering systems with a high number of
controllable discrete and/or continuous parameters (on the or-

der of hundreds or more), and is particularly attractive when
design evaluation is costly and/or time consuming. Because of
its generality, LEMd can be applied to a wide range of design
optimization problems.

Acknowledgments.This paper is a significantly extended ver-
sion of the invited presentation at the 12th International Work-
shop of the European Group for Intelligent Computing in Engi-
neering, Radziejowice, Poland, June 17-19, 2005, organized by
Martina Schnellenbach-Held from the University of Duisburg-
Essen in Germany, and Adam Borkowski from the Institute of
Fundamental Problems of Technology of the Polish Academy
of Sciences in Warsaw, Poland.

The author expresses his gratitude to Ken Kaufman for his
collaboration on the development of the LEMd method and
the implementation and experiments with the ISHED system.
He also provided useful comments on this paper. The author
is also grateful to Janusz Wojtusiak for his review of the paper
and research on the development of LEM3, the newest imple-
mentation of the learnable evolution model.

Thanks go also to Piotr Domanski from the National In-
stitute of Standards and Technology for introducing the author
and his collaborators to the area of optimization of heat ex-
changers and for providing a simulator for evaluating evapora-
tor designs used in ISHED.

Theoretical research that provided a basis for the develop-
ment of LEMd has been done in the Machine Learning and
Inference Laboratory at George Mason University. The Lab-
oratory’s research has been supported in part by the National
Science Foundation under Grants No. IIS-0097476 and IIS-
9906858, and in part by the UMBC/LUCITE #32 grant.

REFERENCES

[1] M.W. Kirschner and J.C. Gerhart,The Plausibility of Life: Re-
solving Darwinin’s Dilemma, Yale University Press, 2005.

[2] Z. Michalewicz,Genetic Algorithms + Data Structures = Evo-
lution Programs, Springer-Verlag, London, 1996.

[3] P. Bentley, “From coffee tables to hospitals: generic evolution-
ary design”, inEvolutionary Design by Computers, pp. 405–
423, ed. P. Bentley, Menlo Park, CA: Morgan Kaufmann, 1999.

[4] P. Bentley,Evolutionary Design by Computers, Menlo Park,
CA: Morgan Kaufmann, 1999.

[5] A. Oyama, “Multidisciplinary optimization of transonic wing
design based on evolutionary algorithms coupled with CFD
solver”, Eur. Congress on Computational Methods in Applied
Sciences and Engineering, 2000.

[6] P. Bentley and D. Corne,Creative Evolutionary Systems, Mor-
gan Kaufmann, 2002.

[7] R.S. Michalski, “Learnable evolution model: evolutionary pro-
cesses guided by machine learning”,Machine Learning38, 9–
40 (2000).

[8] J. Wojtusiak and R.S. Michalski, “The LEM3 implementation
of learnable evolution model and its testing on complex func-
tion optimization problems”,Proc. Genetic and Evolutionary
Computation Conference, GECCO 2006PO6–7, (2006).

[9] R.S. Michalski, and K.A.Kaufman, “The AQ19 system for ma-
chine learning and pattern discovery: a general description and
user’s guide”,Reports of the Machine Learning and Inference

512 Bull. Pol. Ac.: Tech. 54(4) 2006



Optimizing complex systems by intelligent evolution: the LEMd method and case study

LaboratoryMLI 01-2, George Mason University, Fairfax, VA,
2001.

[10] J. Wojtusiak, “AQ21 user’s guide,”Reports of the Machine
Learning and Inference LaboratoryMLI 04-3, George Mason
University, Fairfax, VA, 2004.

[11] R.S. Michalski, “Attributional calculus: a logic and represen-
tation language for natural induction”,Reports of the Machine
Learning and Inference LaboratoryMLI 04-2, George Mason
University, Fairfax, VA, 2004.

[12] P.A. Domanski, D. Yashar, K. Kaufman, and R.S. Michal-
ski, “An optimized design of finned-tube evaporators using the
learnable evolution model”,Int. Journal on Heating, Ventilat-
ing, Air-Conditioning and Refrigerating Research10, 201–211
(2004).

[13] P. Domanski, “EVSIM-an evaporator simulation model ac-

counting for refrigerant and one dimensional air distribution”,
NISTIR, 89–4133 (1989).

[14] R.G. Reynolds, “An introduction to cultural algorithms,Proc.
3rd Annual Conf. on Evolutionary Programming, 131–139
(1994).

[15] S. Saleem and R. Reynolds, “Cultural algorithms in dynamic
environments”,Proc. Congress on Evolutionary Computation,
1513–1520 (2000).

[16] K. Rasheed, “GADO: A genetic algorithm for continuous de-
sign optimization”,Technical Report DCS-TR-352, Department
of Computer Science, Rutgers University, New Brunswick, NJ,
1998.

[17] W.E. Hart, N. Krasnogor, and J.E. Smith,Recent Advances in
Memetic Algorithms, Springer-Verlag, Berlin, 2005.

Bull. Pol. Ac.: Tech. 54(4) 2006 513


