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Abstract. A simple analog circuit is presented which can play a neuron role in static-model-based neural networks implemented in the form of
an integrated circuit. Operating in a transresistance mode it is suited to cooperate with transconductance synapses. As a result, its input signal is
a current which is a sum of currents coming from the synapses. Summation of the currents is realized in a node at the neuron input. The circuit
has two outputs and provides a step function signal at one output and a linear function one at the other. Activation threshold of the step output
can be conveniently controlled by means of a voltage. Having two outputs, the neuron is attractive to be used in networks taking advantage of
fuzzy logic. It is built of only five MOS transistors, can operate with very low supply voltages, consumes a very low power when processing the
input signals, and no power in the absence of input signals. Simulation as well as experimental results are shown to be in a good agreement with
theoretical predictions. The presented results concern a 0.35µm CMOS process and a prototype fabricated in the framework of Europractice.
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1. Introduction

Artificial Neural Networks (ANN’s) have been a subject of in-
terests since a first mathematical model of a biological neuron
appeared more than 60 years ago. Recently, most of works con-
cerning ANN’s lies in the area of mathematical considerations
and they are mainly implemented in software [1,2]. However,
hardware implementations of ANN’s are becoming more and
more popular recently and one can indicate many examples of
successful applications of such ANN’s in practice. One reason
for the interests in hardware implemented ANN’s is because
they can be faster compared to the software ones. Another is
that they can consume less power and exhibit a higher level of
intelligence.

So far, the hardware implemented ANN’s are in-advance-
trained specific application circuits without a possibility to
adaptive self-learning on silicon during operation. Thinking
about implementing in a chip form a densely connected neural
network capable of learning on silicon in the recall phase has
become realistic only recently as a result of advances in CMOS
processes [3–17].

The hardware implementation of intelligent self-learning
ANN’s is still a big challenge. A lot of conditions must be ful-
filled and problems solved yet to achieve this goal. First, proper
low power electronics must be worked out to realize basic op-
erations required in the ANN’s. Second, signals transmitted be-
tween neurons must be voltages, in order to avoid power losses
in conductive paths. Since summation of currents is much eas-
ier to implement than summation of voltages, synapses should
operate in a transconductance and neurons in a transresistance
mode. Moreover, information about the synapse weight should
be storied within a chip, and analog memories seem to be best
for this purpose [7].

Various models of hardware neural networks have been
developed and published [3–5]. We deal with a static model,
where each synapse is accompanied by a local, short-term ana-
log memory. This memory is needed to hold on silicon infor-
mation about the synapse weight during the learning process.
As the network training procedures we propose approaches
based on Kohonen’s [2] or Hebbian’s methods [3], belonging
to the group of unsupervised learning.

Recently, taking advantage of modern CMOS processes,
several electronic circuits have been proposed to realize lo-
cal analog memories [7,17], electronically controlled transcon-
ducatnce synapses [8], a transresistance neuron [9,10], Eu-
clidean distance calculations [12,13], a conscience mechanism
[14,15], a winning neuron detection [16]. The circuit of [9] can
function as a power saving neuron with a step or signum activa-
tion function. In this paper, an improved version of the neuron
circuit is proposed. The improvement relies on adding a sec-
ond output at which the voltage is linearly dependent on the
neuron input current. In this way, we obtain a neuron with two
outputs, i.e. a step-function output and a linear one. The addi-
tional linear output is useful, among others, when the network
performs classification tasks. Then, apart from classifying an
input object to a given group (using the step-function output)
we can asses a level of its belonging to this group (fuzzy logic
approach). The linear output can also be used to detect the win-
ning neuron in a learning process based on a WTA method
(Winner Takes All). From our studies it results, however, that
the WTA neuron detection can be carried out with a better ef-
fect when evaluating a similarity between a learning vector
and a weight vector associated with a given output neuron.
An Euclidean distanced metric can be applied for this purpose
[12–16].

In this paper, simulations (SPICE) concerning the whole
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neuron and measurement results concerning its step output for
a prototype made in a 0.35µm CMOS process have been pre-
sented.

2. Proposed neuron circuit
Electrical scheme of the proposed neuron is shown in Fig. 1.
The currentsI1, I2, ..., Ik, are signals coming from synapses.
They are summed at the neuron input node, and the result-
ing currentIIN is provided to a double-output transresistance
activation circuit built of the transistors M01-M05. The pair
M01/M02 creates a current mirror associated with one output,
called “step output”, while the other output, called “linear out-
put” is based on the M01/M04 current mirror. M03 functions
as a current source controlled by the voltageVth and M05 as a
quasi-linear resistor loading the M01/M04 mirror.

Fig. 1. Simple transresistance CMOS neuron with step and linear ac-
tivation function outputs

At the neuron input, the currentIIN is a sum of currents
delivered by synapses and can be expressed as:

IIN =
k∑

i=1

Ii. (1)

Notice, thatIIN can take only positive values, despite the
fact that the summed input currents can be positive as well as
negative. This is due to the transistor M01, whose gate-source
voltage,VGS1, can not be positive for input voltages being less
than the supply voltageVDD. TheVGS1 voltage biases the tran-
sistor M02 and M04 forcingIIN to be conveyed (current mir-
roring) to the output nodes. Thus,IM2

∼= IIN andIM4
∼= IIN ,

provided that M02 and M04 operate in saturation.
Assuming that the currentsIO1 andIO2 in Fig.1 can be ne-

glected (neuron outputs loaded by a MOS transistor gate), we
can write:

IM2 = IM3. (2)

Each of the transistors M02 and M03 can operate either in
saturation or in triode region, depending on the control voltage
Vth and the input currentIIN . Denote byIth drain current of
M03 operating in saturation. For the M03 operation in strong
inversion,Ith is approximately described by:

Ith
∼= K (Vth − Vp)

2
, (3)

whereVth is drain current,Vth is gate to source voltage,
Vp is pinch-off voltage andK is a real-valued coefficient. If
the input currentIIN is high and satisfies the inequality:

IIN > Ith, (4)

the transistor M03 operates in saturation, M02 in the triode
region (current mirroring of the pair M01/M02 does not func-
tion) and the following relation is true:

IIN > IM2 = IM3 = Ith. (5)

This is an active state of the neuron. Its output voltageVO1 is
then approximately equal toVDD.

If the input current,IIN , is less than the threshold value,
Ith, i.e. when:

IIN < Ith, (6)

M02 is in saturation (the M01-M02 current mirror functions
properly) and M03 is forced to operate in the triode region,
which leads to:

IIN = IM2 = IM3 < Ith. (7)

Output voltageVO1 is then close to zero and this is an inactive
state of the neuron.

From (6) and (7) it results that the neuron consumes no sup-
ply current (no supply power) ifIIN equals zero (important
advantage). This takes place, for instance, when all synapses
are inactive and provide no current to the neuron summation
node, which can be expressed as:

I1 = I2 = . . . = Ik = 0. (8)

In addition, the presented neuron is well suited to low sup-
ply voltages and is able to carry out its tasks for the supply
voltageVDD being only slightly higher than the M01 transis-
tor pinch-off voltage. This is desirable from the point of view
of reducing power consumption associated with processing the
input currentIIN for IIN being different from zero (neuron in
operation).

At the linear output in Fig. 1, the transistor M05 works
in the triode region (non-saturated channel) and, as previously
mentioned, plays a resistor role that loads the M04 transistor.
An operation in this region takes place when drain-source volt-
age,VDS , gate-source voltage,VGS , and pinch-off voltage,Vp,
of M05 fulfill the following inequality:

VDS < VGS − Vp. (9)

The higher is the value on the right hand side of (9), com-
pared toVDS , the more linear is the transistor channel resis-
tance. For this reason, gate of M05 is connected to the supply
voltageVDD. As a result, theVO2 voltage at the linear output in
Fig. 1 is approximately proportional to theIIN input current.
A sufficiently large value of the channel resistance, required to
operating with low currents (low power consumption) is ob-
tained for a long and narrow channel of M05.

3. The neuron cooperation with synapses
and local memories

Since signals transmitted between neurons should be voltages
and output signals of the synapses should be currents, the neu-
ron must operate in a transresistance mode and the synapses
in a transconductance one. A common feature of ANN’s im-
plemented in both software and hardware is a partition into a
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learning phase and recall phase, where the last starts after the
first is finished. Such a partition results from the fact that learn-
ing procedure required by artificial networks lasts a very long
time. If we want the ANN to be able to learn adaptively in oper-
ation during the recall phase, the learning time must be consid-
erably shortened. To achieve this goal, we propose to use ana-
log medium-term memories and locate them close to synapses
as shown in Fig. 2. In these memories, information about the
synapse weight is stored. The medium-term means that infor-
mation should be held at least as long as it is required for one
iteration of the learning procedure. This enables a quick, re-
alized within a chip, variations of the synapse weights. After
the learning process is finished, the weight information should
be additionally recorded in an external digital memory. This
memory is also needed to periodically refresh analog memo-
ries in the recall phase (by means of multiplexing techniques)
until a next procedure of an adaptive self-learning stars.

Fig. 2. Static neuron model including synapses coupled with local
memories suitable for adaptive ANN’s implemented in a chip form

and trained on silicon

Scheme of a transconductance synapse [8] which is well
suited to cooperate with the proposed neuron is presented in
the next section. Like in the neuron case, its advantage is a zero
power consumption when being inactive, i.e. when no voltage
is delivered to its input, and a power economic operation when
processing a different from zero voltage.

An analog medium-term memory of a capacitive type, suit-
able to be applied in our network is presented in [7,17]. Its ad-
vantage is an increased holding time, for a short acquisitions
time, achieved due to applying a switched feedback around the
holding capacitor. This allows us to obtain a relatively long
holding time even for small capacitances of the holding capac-
itor. ANN’s based on the scheme of Fig. 2 are attractive for
networks with unsupervised learning on silicon using a “Win-
ner takes all” mechanism.

4. Spice simulation studies

Results presented in this section concern a 0.35µm CMOS
process, for which the circuit was designed. The neuron prop-
erties as well as its cooperation with synapses were tested. Fig.
3 presents the tested circuit with only one synapse. Weights of
synaptic connections are controlled by means of the voltages
VC1 andVC2, delivered from analog memories, in a differential
way. The differential control is superior over a single voltage
control in respect of damping common mode effects and im-
proves the control precision. Other properties of the synapse
have been described in [8]. Layout of the tested circuits was
made using Cadence and simulations performed by means of
HSPICE and PSPICE. Parasitic elements resulting from the
layout have been taken into account in electrical schemes of
the circuits examined. Pinch-off voltages of NMOS and PMOS
transistors were equal to 0,4655 V and – 0,617 V, respectively.
Transistor dimensions are shown in Tables 1 and 2.

Fig. 3. Implemented in 0.35µm CMOS process neuron with one
synapse tested in the way of simulations

Table 1
Transistor dimensions of the simulated and experimentally tested

neuron

Tran. M01 M02 M03 M04 M05

W[µ] 2 2 2 2 1
L[µ] 2 2 2 2 140

In Fig. 4, principle of the neuron operation from the step
output point of view is illustrated. The upper plot includes four
curves presenting the neuron input currentIIN as a function
of VI voltage at the synapse input, for different values of the
synapse weight, in the case with only one synapse like shown
in Fig. 3.

Table 2
Transistor dimensions of the synapses used in simulations

Tran. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

W[µ] 18 18 18 18 2 7 2 7 2 30 30
L[µ] 20 20 0.8 0.8 200 4 200 4 200 0.8 0.8
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Fig. 4. The neuron basic signals forVth = 0.49 V when driven by one
synapse: a) input currentIIN for four synapse weights versus input
voltageVI of the synapse, b) drain currentIM3 of the transistor M03

versusVI , c) VO1 voltage at the step output versusVI

Fig. 5. Transfer characteristics concerning the step output of the tran-
simpedance neuron showing the possibility of controlling the thresh-
old current Ith by means ofVth: a) VO1 versusIIN for Vth = 0.48
V (upper plot), b)VO1 versusIIN for Vth = 0.49 V (middle plot), c)

VO1 versusIIN for Vth = 0.505 V (bottom plot)

For clarity reasons, a constant value of the neuron activa-
tion thresholdIth = 65.8 nA, corresponding toVth = 0.49 V,

is also marked on this plot (horizontal line). The middle plot
presents theIM3 drain current of MO3 and the bottom output
voltageVO1 of the neuron as functions ofVI . If IIN crosses the
Ith level (upper plot),IM3 gets into saturation (middle plot)
and output voltage takes approximately the valueVO1 = 2 V
(bottom plot).

In Fig. 5, a possibility of controlling an activation thresh-
old of the step output is demonstrated. The shown three curves
correspond to a different value ofVth. For the upper trace we
haveVth = 0.48 V, for the middleVth = 0.49 V and for the
bottomVth = 0.505 V. Simulated properties of the neuron lin-
ear output are shown in Fig. 6.

Fig. 6. Simulated DC properties at the linear output of the neuron
driven by three synapses of the type shown in Fig. 3. a) power con-
sumed by the whole circuit (neuron plus three synapses), b) power
consumed by the neuron only, c) the linear output voltage,VO2, of

the neuron versus its input currentIIN

The upper plot presents total power consumed by the neu-
ron and three synapses with which it cooperates as a func-
tion of the neuron input currentIIN . Voltages controlling the
synapse weights are as follows:VC1 = 2 V andVC2 = 1 V for
the first synapse,VC1 = 1.9 V andVC2 = 1.7 V for the second
synapse andVC1 = 1.9 V andVC2 = 1.7 V for the last one.
Input voltage,VI , of each synapse is varied from zero to the
supply voltageVDD. As can be seen, the consumed power in-
creases whenVI rises. In Fig. 6, the highest value of this power
is less than 50µW and coincides withVin = VDD = 2 V. The
middle plot presents power consumed by the neuron only. This
power does not exceed the 10µW level and is rather low com-
pared to that of the synapses. At the bottom plot we have the
neuron transfer characteristic at the linear output (output volt-
ageVO2 as a function of the input currentIIN ). The obtained
curve is almost linear, especially for low values of the input
currentIIN .
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Linearity of the transresistance transfer function for the
VO2 output depends on the M01/M04 current-mirror proper-
ties as well as on aVDS/ID characteristic of the M05 tran-
sistor, which is used as a resistance loading the current mir-
ror. As mentioned in Section 2, linearity of the M05 resistance
is the higher, the lower is theVDS voltage compared to the
VGS–Vp voltage difference. Lower values ofVDS correspond
to lower values of the current flowing through the current mir-
ror. As a consequence, linearity of the neuron transfer function
improves when the neuron input current,IIN , decreases. The
achieved quasilinear transfer function shown in Fig. 6 (bottom
plot) is in a good agreement with theoretical predictions. Con-
crete values ofIIN , for which the linearity is sufficiently good,
depend on the M01, M02 and M03 transistor sizes. Higher
values of W/L aspect ratios (width to length ratios of transis-
tor channels) result in higherIIN values for givenVGS and
VDS . This, of course, is at the cost of increasing the con-
sumed power. Designing the transistor sizes, to ensure the neu-
ron linear operation we have to take into account the number
of synapses connected to its input and values of currents deliv-
ered by the synapses. Allowing higher values of the consumed
power, one can obtain the neuron linear operation even for a
large number of synapses.

Fig. 7. Time response at the neuron step output: a) input currentIIN

versus time (upper plot), b) output voltageVO1 versus time (bottom
plot)

Speed and stability of the neuron operation, for the case
with Vth = 0.505 V, is illustrated in Fig. 7. The top trace
presents a current supplied to the neuron input and the bottom
the neuron voltage response to this current. Some delay of the

response can be observed when going from the higher to the
lower voltage levels. Frequency of the signals is 250 kHz. No-
tice that no parasitic oscillations appear in the response volt-
age. This means a stable operation of the circuit. Its speed,
however, is rather low. Fortunately, the low speed is not a great
problem here because the synapses are not very fast as well. A
slow operation of the synapses results, in general, from reduc-
ing their power consumption which is associated with reducing
currents flowing through all transistors. In case of ANN’s con-
sidered in this paper, a stable and power economic operation is
more important that the speed.

5. Prototyping and experimental results
A first version of the neuron which included only one out-
put (the step one) have already by prototyped and experimen-
tally tested, while the present version with the additional linear
output was, till now, only examined by means of simulations.
Preparations for prototyping it are in progress. For this reason,
we present measurement results concerning only the step out-
put of the neuron.

As it is known, current measurements are in general more
complex and less accurate than voltage ones. This is particu-
larly true when the currents are very low, like it takes place in
our case. That is way in the performed experiments, instead of
the neuron input currentIIN , the synapse input voltage,VI ,
was measured. As mentioned in the previous section, the pro-
totyped circuit was implemented in a 0.35 CMOS technology
by the firm NORDIC associated with AMS on the basis of our
full custom design. We measured the fabricated chips, where
among other circuits the neuron and synapses were included,
for the supply voltage equal toVDD = 2.4 V. Transistor di-
mensions of the fabricated neuron were exactly as shown in
Table 1 and a little different in case of synapses (Table 3).

Fig. 8. Measured transfer characteristic (output voltageVO1 versus
VI voltage at the synapse input) of the circuit shown in Fig. 3, forVth

equal to 0.5 V, 0.6 V and 0.7 V

Table 3
Transistor dimensions of the synapses used in the prototype measurements

Tran. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

W[µ] 18 18 16 16 2 7 2 7 2 30 30
L[µ] 20 20 0.8 0.8 50 4 400 4 400 0.8 0.8
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We have purposely presented the simulation results for dif-
ferent dimensions of some transistors (mainly M5, M9 and
M10) to show that the most important transfer characteristic,
i.e. the characteristic concerning the step output, has proved
to be very similar in case of the performed simulations and
measurements, despite these differences. This means a low
sensitivity of the neuron characteristic to variations in some
transistors dimensions. Effects of these variations are observed
mainly in the area of power consumption and operation speed.

Experimentally determined transfer properties of the cir-
cuit of Fig. 3, i.e. relations betweenVI andVO1, are presented
in Fig. 8. As can be seen,VO1 drops to zero for sufficiently low
values ofVI . This, however, is true ifVth is not less than the
M03 pinch-off voltageVp (equal approximately to 0.47 V). If
not, i.e. forVth < Vp, the M03 channel resistance becomes ex-
tremely large causing an incorrect operation of the M01/M02
current mirror. Comparing Figs. 8 and 5, a big similarity can
be noticed. In particular, a step character of the transfer char-
acteristic and a possibility of controlling the neuron activation
threshold is clearly seen.

Till now, the neuron with linear output have not been inves-
tigated experimentally because the authors were unable, for fi-
nancial reasons, to realize another chip including the circuit. At
present, such a possibility appeared in collaboration with Uni-
versity of Alberta in Edmonton, Canada. A layout prepared for
a CMOS TSCM 0.18µm process have already been made and
sent for fabrication. Prototypes should be ready at the and of
2006. Experimental results of the full neuron will be presented
in future publications of the authors.

6. Conclusions
A simple CMOS circuit has been proposed which can be used
as a neuron in hardware implemented ANN’s. Its usefulness
to build a huge CMOS neural network results from the fact
that it operates in a transconductance mode and is power eco-
nomic. The transconductance operation means low losses in
conductive path associated with using voltages as signals trans-
mitted between neurons. It also means that a great number of
synapses can be connected with one neuron because currents
provided by the synapses can be easily summed in a single
node at the neuron input. The power economic operation man-
ifests itself in two ways. For different from zero input signals,
a small amount of energy is consumed by the circuit. In the ab-
sence of input signals, no power is taken from supply sources.
In contrast to the first version of the neuron published in [9],
the presented version has two outputs. At one of them, voltage
response to the input current is of a step-function type (step
output) while at the other, voltage is linearly related to the in-
put current. The step output enables an operation with binary
output signals and the linear can be utilized, as an alternative to
the Euclidean distance method [11–16], to point out the win-
ner neuron in a WTA-based unsupervised learning on silicon.
A scheme of cooperation between the neuron, synapses and
analog memories, as a way of realizing the learning within a
chip during the recall phase, has also been outlined. Proper-
ties of the neuron and its good cooperation with synapses have

been investigated in details and positively verified by means
of SPICE simulations. Experimental studies were also carried
out but on a restricted scale because only the first version of
the neuron have already been prototyped. The measurements
were performed using a chip fabricated in a 0.35µm CMOS
process within the Europractice framework. Preparations for
further prototypes are in progress.
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[14] T. Taláska, R. Wojtyna, R. Długosz, and K. Iniewski, “Imple-
mentation of the conscience mechanism for Kohonen’s Neu-
ral Network in CMOS 0.18µm technology”, International
Conference Mixed Design of Integrated Circuits and Systems
MIXDES’2006, Gdynia, 319–315 (2006).
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