BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 54, No. 4, 2006

Transresistance CMOS neuron for adaptive neural networks
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Abstract. A simple analog circuit is presented which can play a neuron role in static-model-based neural networks implemented in the form of
an integrated circuit. Operating in a transresistance mode it is suited to cooperate with transconductance synapses. As a result, its input signa
a current which is a sum of currents coming from the synapses. Summation of the currents is realized in a node at the neuron input. The circu
has two outputs and provides a step function signal at one output and a linear function one at the other. Activation threshold of the step outpt
can be conveniently controlled by means of a voltage. Having two outputs, the neuron is attractive to be used in networks taking advantage ¢
fuzzy logic. It is built of only five MOS transistors, can operate with very low supply voltages, consumes a very low power when processing the
input signals, and no power in the absence of input signals. Simulation as well as experimental results are shown to be in a good agreement w
theoretical predictions. The presented results concern a®mBEMOS process and a prototype fabricated in the framework of Europractice.
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1. Introduction Various models of hardware neural networks have been
developed and published [3-5]. We deal with a static model,
Avrtificial Neural Networks (ANN's) have been a subject of in-where each synapse is accompanied by a local, short-term ana-
terests since a first mathematical model of a biological neurdsg memory. This memory is needed to hold on silicon infor-
appeared more than 60 years ago. Recently, most of works c@nation about the synapse weight during the learning process.
cerning ANN's lies in the area of mathematical considerationas the network training procedures we propose approaches
and they are mainly implemented in software [1,2]. Howevebased on Kohonen's [2] or Hebbian’s methods [3], belonging
hardware implementations of ANN’s are becoming more ang the group of unsupervised learning.
more popular recently and one can indicate many examples of Recently, taking advantage of modern CMOS processes,
successful applications of such ANN's in practice. One reasafveral electronic circuits have been proposed to realize lo-
for the interests in hardware implemented ANN's is becausg| analog memories [7,17], electronically controlled transcon-
they can be faster compared to the software ones. Anotherggcatnce synapses [8], a transresistance neuron [9,10], Eu-
that they can consume less power and exhibit a higher level gfgean distance calculations [12,13], a conscience mechanism
intelligence. [14,15], a winning neuron detection [16]. The circuit of [9] can
So far, the hardware implemented ANN'’s are in-advanceunction as a power saving neuron with a step or signum activa-
trained specific application circuits without a possibility totion function. In this paper, an improved version of the neuron
adaptive self-learning on silicon during operation. Thinkingircuit is proposed. The improvement relies on adding a sec-
about implementing in a chip form a densely connected neurahd output at which the voltage is linearly dependent on the
network capable of learning on silicon in the recall phase haguron input current. In this way, we obtain a neuron with two
become realistic only recently as a result of advances in CMQsaitputs, i.e. a step-function output and a linear one. The addi-
processes [3—-17]. tional linear output is useful, among others, when the network
The hardware implementation of intelligent self-learningoerforms classification tasks. Then, apart from classifying an
ANN's is still a big challenge. A lot of conditions must be ful- input object to a given group (using the step-function output)
filled and problems solved yet to achieve this goal. First, prop#¢€ can asses a level of its belonging to this group (fuzzy logic
low power electronics must be worked out to realize basic ogproach). The linear output can also be used to detect the win-
erations required in the ANN’s. Second, signals transmitted bging neuron in a learning process based on a WTA method
tween neurons must be voltages, in order to avoid power losgd¥inner Takes All). From our studies it results, however, that
in conductive paths. Since summation of currents is much ed§e WTA neuron detection can be carried out with a better ef-
ier to implement than summation of voltages, synapses shodft when evaluating a similarity between a learning vector
operate in a transconductance and neurons in a transresistafieé a weight vector associated with a given output neuron.
mode. Moreover, information about the synapse weight shoufin Euclidean distanced metric can be applied for this purpose
be storied within a chip, and analog memories seem to be bés2—16].
for this purpose [7]. In this paper, simulations (SPICE) concerning the whole
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neuron and measurement results concerning its step outputfioe transistor MO3 operates in saturation, M02 in the triode
a prototype made in a 0.3&m CMOS process have been pre-region (current mirroring of the pair MO1/M02 does not func-
sented. tion) and the following relation is true:

2. Proposed neuron circuit Iin > Ine = I = It (5)

Electrical scheme of the proposed neuron is shown in Fig. This is an active state of the neuron. Its output voltége is
The currentdy, I, ..., I}, are signals coming from synapsesthen approximately equal 8p .

They are summed at the neuron input node, and the result- If the input currentl;y, is less than the threshold value,
ing currentl;y is provided to a double-output transresistancé:n, i.e. when:

activation circuit built of the transistors M01-M05. The pair Ity < Ly, (6)
(I\:/la(l)ltldlv!g fe;rgii;it? i\%ﬁ ntthrglgzﬁre?(s)i?&?tecil\llve: ;h“ﬁ:eea?uotgﬂ\t/lOZ is in saturation (the M01-MO02 current mirror functions
put” is based on the M01/M04 current mirror. MO3 functionssvrmgﬁrllgégggo_MO?’ is forced to operate in the triode region,
as a current source controlled by the voltaggand M0O5 as a '

quasi-linear resistor loading the M01/M04 mirror. Iy = Iy = Ings < Iip. (7)

Output voltagd/s; is then close to zero and this is an inactive

state of the neuron.

\ From (6) and (7) it results that the neuron consumes no sup-

’M4l lo2=0 ply current (no supply power) if;5 equals zero (important

»Vo:  advantage). This takes place, for instance, when all synapses
are inactive and provide no current to the neuron summation

V])[)
Iy

A In [

input node

linear output

I

%@5 node, which can be expressed as:
L=L=..=1I=0. (8)

Fig. 1. Simple transresistance CMOS neuron with step and linear ac-

tivation function outputs In addition, the presented neuron is well suited to low sup-
_ _ ply voltages and is able to carry out its tasks for the supply
At the neuron input, the curredyy is a sum of currents voltageV,, being only slightly higher than the MO1 transis-

delivered by synapses and can be expressed as: tor pinch-off voltage. This is desirable from the point of view
b of reducing power consumption associated with processing the
Iy = Z[Z.. (1) input currentl; i for I; 5 being different from zero (neuron in
i—1 operation).

Notice. thatl, ~ can take onlv positive values. despite the At the linear output in Fig. 1, the transistor MO5 works
f ' [N~ y P » GESp in the triode region (non-saturated channel) and, as previously
act that the summed input currents can be positive as well %Sentioned lays a resistor role that loads the M04 transistor
negative. This is due to the transistor MO1, whose gate-source ), Pays. . . '
L : . S\n operation in this region takes place when drain-source volt-
voltage,Vgs1, can not be positive for input voltages being Iessé eV i rce voltacd’ nd pinch-off voltagel’
than the supply voltagés . TheVgs: voltage biases the tran- 297 Ds. date-source voltagecs, and pinch-ott Voltageyy,
a PRl 9€pD GS1 9 of MO5 fulfill the following inequality:
sistor MO2 and MO04 forcind; y to be conveyed (current mir- '
roring) to the output nodes. ThuGy s = I;y andlyy = 15, Vbs < Vas — V). (9)
provided that MO2 and M04 operate in saturation.
Assuming that the currenfg); andly, in Fig.1 can be ne-
glected (neuron outputs loaded by a MOS transistor gate),

can write:

The higher is the value on the right hand side of (9), com-
\Bgred toVps, the more linear is the transistor channel resis-
tance. For this reason, gate of MO5 is connected to the supply
Tor =T ) vqltaggVDD. As_aresult, thé/po \_/oltage atthe !inear outputin

M2 M3 Fig. 1 is approximately proportional to they input current.

Each of the transistors M02 and M03 can operate either i sufficiently large value of the channel resistance, required to
saturation or in triode region, depending on the control voltageperating with low currents (low power consumption) is ob-
Vi, and the input currenk; 5. Denote byl drain current of tained for a long and narrow channel of MO5.

MO3 operating in saturation. For the M03 operation in strong
inversion, Iy, is approximately described by: 3. The neuron cooperation with synapses

I = K (Vi — V)2, 3) and local memories

Since signals transmitted between neurons should be voltages
and output signals of the synapses should be currents, the neu-
ron must operate in a transresistance mode and the synapses
in a transconductance one. A common feature of ANN'’s im-
Irn > L, (4) plemented in both software and hardware is a partition into a

whereVy;, is drain current}y,, is gate to source voltage,
V, is pinch-off voltage and¥ is a real-valued coefficient. If
the input current; v is high and satisfies the inequality:
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learning phase and recall phase, where the last starts after ¢he Spice simulation studies

firstis finished. Such a partition results from the fact that learn- . . .

ing procedure required by artificial networks lasts a very lon esults presenFed In th,'s s.ectlon concern a @BHCMOS
time. If we want the ANN to be able to learn adaptively in oper rocess, for Wh'c_h the C'rcu'_t was_de5|gned. The neuron prop-
ation during the recall phase, the learning time must be consi ties as well as its coo_perf_;\tlo_n with synapses were tes'Fed. Fig.
erably shortened. To achieve this goal, we propose to use al;’fagresgnts the tegted circuit with only one synapse. Weights of
log medium-term memories and locate them close to synaps%@apt'c connegtlons are controlied by means of the volta}ges
as shown in Fig. 2. In these memories, information about th‘éCl anchg, dehvgred from apalog memories, In gdlfferennal
synapse weight is stored. The medium-term means that infdyay. The differential control is superior over a single voltage

mation should be held at least as long as it is required for or‘fémtrOI in respect of damping common mode effects and im-

iteration of the learning procedure. This enables a quick, r roves the control precision. Other properties of the synapse

alized within a chip, variations of the synapse weights. Afte ave bee_n described in [8]..Lay0L.Jt of the tested circuits was
the learning process is finished, the weight information shoumggfcuémgdcggir:cceEagd smqlatuljns performe:j_by ;neanshof
be additionally recorded in an external digital memory. Thi an ’ .arasmc © ements resu ting from the
memory is also needed to periodically refresh analog mem yout have been taken into account in electrical schemes of
ries in the recall phase (by means of multiplexing technique € circuits examined. Pinch-off voltages of NMOS and PMOS

until a next procedure of an adaptive self-learning stars. t an3|_stors were egual 00,4655 V and - 0,617V, respectively.
Transistor dimensions are shown in Tables 1 and 2.
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Fig. 2. Static neuron model including synapses coupled with local

memories suitable for adaptive ANN's implemented in a chip fornFig. 3. Implemented in 0.3ftm CMOS process neuron with one
and trained on silicon synapse tested in the way of simulations

Scheme of a transconductance synapse [8] which is well
suited to cooperate with the proposed neuron is presented in
the next section. Like in the neuron case, its advantage isazero _ _ Tab!e 1 _
power consumption when being inactive, i.e. when no voItageTranS'Stor dimensions of the simulated and experimentally tested

is delivered to its input, and a power economic operation when neuron

processing a different from zero voltage. Tran. MO01 MO2 MO03 M04 MO05
An analog medium-term memory of a capacitive type, suit- W] 2 2 2 2 1

able to be applied in our network is presented in [7,17]. Its ad- L[] 2 2 2 2 140

vantage is an increased holding time, for a short acquisitions
time, achieved due to applying a switched feedback around the In Fig. 4, principle of the neuron operation from the step
holding capacitor. This allows us to obtain a relatively longputput point of view is illustrated. The upper plot includes four
holding time even for small capacitances of the holding capacurves presenting the neuron input currépy, as a function

itor. ANN’s based on the scheme of Fig. 2 are attractive foof V/; voltage at the synapse input, for different values of the
networks with unsupervised learning on silicon using a “Winsynapse weight, in the case with only one synapse like shown
ner takes all” mechanism. in Fig. 3.

Table 2
Transistor dimensions of the synapses used in simulations

Tran. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Ml

Wy 18 18 18 18 =2 7 2 7 2 30 30
L 20 20 08 08 200 4 200 4 200 08 08

Bull. Pol. Ac.: Tech. 54(4) 2006 445



R. Wojtyna and T. Talska

400nA+---------- oo tommoeees Hommmmmomme + is also marked on this plot (horizontal line). The middle plot
' presents thd,,3 drain current of MO3 and the bottom output
voltageVy of the neuron as functions &%. If 17y crosses the
I, level (upper plot),[a3 gets into saturation (middle plot)

i - | e

_ sl _ and output voltage takes approximately the valge = 2 V
ona 4o - e i (bottom plot).
roona g 1OW * 55 Be In Fig. 5, a possibility of controlling an activation thresh-
! old of the step output is demonstrated. The shown three curves
i correspond to a different value &f;,. For the upper trace we
i haveV;, = 0.48 V, for the middleV;;, = 0.49 V and for the
bottomV};, = 0.505 V. Simulated properties of the neuron lin-
on ear output are shown in Fig. 6.
o i(v3)
2.0V 4---------- e - - 4
0.0V + : : — ]
0.0v 0.5V 1.0v 1.5v 2.0V
a v(12)

Vi

Fig. 4. The neuron basic signals figg, = 0.49 V when driven by one

synapse: a) input curredt x for four synapse weights versus input

voltageV; of the synapse, b) drain currehi;s of the transistor MO3
versusly, ¢) Vo1 voltage at the step output versus

e

—————————— B e ettt &
200nA 300nA 400nA
— - + i(vcal)
Fig. 6. Simulated DC properties at the linear output of the neuron
' driven by three synapses of the type shown in Fig. 3. a) power con-
E sumed by the whole circuit (neuron plus three synapses), b) power
consumed by the neuron only, c) the linear output voltags,, of
__________ U | the neuron versus its input currehty
200nA 300nA 400nA
The upper plot presents total power consumed by the neu-
“““““ S ron and three synapses with which it cooperates as a func-
: tion of the neuron input currert . Voltages controlling the
! synapse weights are as followig:; =2V andVgy = 1V for
the first synapsd/-; = 1.9 VandVg, = 1.7 V for the second
synapse andlz; = 1.9 Vand Vo = 1.7 V for the last one.
0 0V el - S U ¥ Input voltage,V;, of each synapse is varied from zero to the
OnA v(12) 100nA 200nA 300nA  400nA supply voltagel’pp. As can be seen, the consumed power in-
i (viou) creases whel rises. In Fig. 6, the highest value of this power

. - . is less than 5W and coincides with;,, = Vpp =2 V. The
Fig. 5. Transfer characteristics concerning the step output of the tran- .

) . T~ . middle plot presents power consumed by the neuron only. This
simpedance neuron showing the possibility of controlling the thresh-

old current Ith by means df,,.: &) Vo versusl; for Vi, — 0.48  POWET does not exceed the LV level and is rather low com-
V (upper plot), b)Vo: versuslyy for Vi, = 0.49 V (middle plot), c) pared to that of the synapses. At the bottom plot we have the
Vou versuslyy for Vi, = 0.505 V (bottom plot) neuron transfer characteristic at the linear output (output volt-
ageVps as a function of the input curreiit ;). The obtained
For clarity reasons, a constant value of the neuron activaurve is almost linear, especially for low values of the input
tion thresholdl;;, = 65.8 nA, corresponding td;;, = 0.49V, current/;y.
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Linearity of the transresistance transfer function for theesponse can be observed when going from the higher to the
Vo2 output depends on the MO1/M04 current-mirror propertower voltage levels. Frequency of the signals is 250 kHz. No-
ties as well as on &ps/Ip characteristic of the MO5 tran- tice that no parasitic oscillations appear in the response volt-
sistor, which is used as a resistance loading the current miige. This means a stable operation of the circuit. Its speed,
ror. As mentioned in Section 2, linearity of the MO5 resistanchowever, is rather low. Fortunately, the low speed is not a great
is the higher, the lower is th&pg voltage compared to the problem here because the synapses are not very fast as well. A
Vas—V, voltage difference. Lower values &fps correspond slow operation of the synapses results, in general, from reduc-
to lower values of the current flowing through the current miring their power consumption which is associated with reducing
ror. As a consequence, linearity of the neuron transfer functiaiurrents flowing through all transistors. In case of ANN’s con-
improves when the neuron input currefty, decreases. The sidered in this paper, a stable and power economic operation is
achieved quasilinear transfer function shown in Fig. 6 (bottormore important that the speed.
plot) is in a good agreement with theoretical predictions. Con-
crete values of v, for which the linearity is sufficiently good, 5. Prototyping and experimental results
depend on the M01, M02 and MO3 transistor sizes. Highg& ' . _

. . . . A first version of the neuron which included only one out-

values of W/L aspect ratios (width to length ratios of transis- :
S . put (the step one) have already by prototyped and experimen-

tor channels) result in highdl;y values for givenVgs and . , : o )

. . : . tally tested, while the present version with the additional linear
Vps . This, of course, is at the cost of increasing the con- . : . :
o : . output was, till now, only examined by means of simulations.
sumed power. Designing the transistor sizes, to ensure the el . o ) )
. i : reparations for prototyping it are in progress. For this reason,
ron linear operation we have to take into account the number

. we present measurement results concerning only the step out-
of synapses connected to its input and values of currents dellv—t of the neuron

ered by the synapses. Allowing higher values of the consum&d L .
As it is known, current measurements are in general more

power, one can obtain the neuron linear operation even for a - :
large number of synapses complex and less accurate than voltage ones. This is particu-

larly true when the currents are very low, like it takes place in
our case. That is way in the performed experiments, instead of
the neuron input curren; 5, the synapse input voltag&y,

was measured. As mentioned in the previous section, the pro-
totyped circuit was implemented in a 0.35 CMOS technology
by the firm NORDIC associated with AMS on the basis of our
full custom design. We measured the fabricated chips, where
among other circuits the neuron and synapses were included,
for the supply voltage equal tdpp = 2.4 V. Transistor di-
mensions of the fabricated neuron were exactly as shown in
Table 1 and a little different in case of synapses (Table 3).

2.5
9 - V=05V
2 V=06V
— o V, =07V
Time Z. 15 th
51
Fig. 7. Time response at the neuron step output: a) input cufrgnt =
versus time (upper plot), b) output volta§ie; versus time (bottom 0.5
plot)

0 02040608 1 1.2 1.4 1.6 1.8 2 22 24
Speed and stability of the neuron operation, for the case Vi [V]

with Vi, = 0.505 V, is illustrated in Fig. 7. The top trace Fig. 8. Measured transfer characteristic (output voltége versus
presents a current supplied to the neuron input and the bottarpvoltage at the synapse input) of the circuit shown in Fig. 3}far
the neuron voltage response to this current. Some delay of the equalto 0.5V, 0.6 Vand 0.7 V

Table 3
Transistor dimensions of the synapses used in the prototype measurements

Tran. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1l

W 18 18 16 16 2 7 2 7 2 30 30
L 20 20 08 08 50 4 400 4 400 08 08
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We have purposely presented the simulation results for dibeen investigated in details and positively verified by means
ferent dimensions of some transistors (mainly M5, M9 andf SPICE simulations. Experimental studies were also carried
M10) to show that the most important transfer characteristiout but on a restricted scale because only the first version of
i.e. the characteristic concerning the step output, has provéte neuron have already been prototyped. The measurements
to be very similar in case of the performed simulations andere performed using a chip fabricated in a 038 CMOS
measurements, despite these differences. This means a lmwcess within the Europractice framework. Preparations for
sensitivity of the neuron characteristic to variations in somturther prototypes are in progress.
transistors dimensions. Effects of these variations are observed
mainly in the area of power consumption and operation speed.
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