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On the static and dynamic response of electrostatic actuators
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Abstract. A systematic approach for analyzing the static and dynamic electromechanical response of electrostatic actuators is presented. The
analysis is based on energy methods. An analysis approach for extracting dynamic response parameters of electrostatic actuators, while only
considering static states of the system, is presented. This is an efficient method for extracting the dynamic pull-in parameters because it does
not require time integration of momentum equations.
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1. Introduction

Electrostatic actuators are prevalent in Micro-Electro-
Mechanical Systems (MEMS) because they are compatible
with microfabrication technology, have a low power consump-
tion, and because electrostatic forces are sufficiently large to
drive micro-motors. Electrostatic actuators can be produced
using the same micromachining technology that was devel-
oped for producing microelectronics systems [1,2] (with the
addition of a few new technologies developed primarily for
MEMS). Many other types of actuators used in microsystems
either require special materials and non-standard fabrication
processes (e.g. piezoelectric actuators) or have a large power
consumption (e.g. thermoelastic actuators) [3]. In many com-
mon products with macroscopic size (i.e. with characteristic
size above 1 mm) electromagnetic forces together with axes
and sliders are used to construct motors. Axes and sliders are
often impractical in microsystems due to issues of reliability
and wear. In many microsystems relative motion between dif-
ferent parts of the system is enabled by use of elastic flexures.
Flexures are designed to have a high rigidity in all directions
in which motion is to be restricted, and a lower rigidity in
the directions in which motion is desired. In microsystems,
the distance between electrodes that are subjected to different
electric potentials is sufficiently small to enable large electro-
static forces. These electrostatic forces are sufficiently large
to induce motion of the flexures and therefore enable the con-
struction of micro-motors.

Due to the nonlinear nature of electrostatic forces, the elec-
tromechanical response of many electrostatic actuators is non-
linear and their stable range may be limited by the well known
pull-in instability [4,5]. The pull-in instability is an unwanted
effect when a large stable travel range is required (e.g. [6,7]),
but may be a beneficial effect when rapid transition between
two states of the system is required (e.g. RF-MEMS switches
[8,9]).

Electrostatic switches are currently being developed for
RF-MEMS applications, where they have strong advantages
over similar components implemented in electronics [8–11].

Much effort has been invested in recent years to develop effi-
cient modelling tools that would facilitate the design process of
electrostatic switches and would provide insight on the pull-in
instability (e.g. [12–17]).

The parameters of the pull-in state of electrostatic switches
are of specific interest in the design process. Time integration
of the equation of motion of electrostatic actuators requires
much computation time primarily due to nonlinear effects such
as electrostatic forces, damping, and more.

Recently, an alternative approach for extracting the pull-in
state of electrostatic actuators was proposed [18,19]. This ap-
proach is limited to systems with negligible damping but it en-
ables to extract the pull-in parameters of the dynamic response
by considering only static states of the system.

The present work reviews energy methods for extract-
ing the static and dynamic pull-in parameters of electrostatic
switches. The analysis method is demonstrated by consider-
ing the electromechanical response of two model problems of
electrostatic actuators with a single degree of freedom, and a
third model problem with a more general geometry.

2. Static response of electrostatic actuators

2.1. Static response of the parallel-plates actuator.In this
section the static response of an electrostatic actuator with
a single degree-of-freedom (DOF) is analyzed. As a simple
model problem, consider the parallel-plate actuator illustrated
in Fig. 1. The actuator is constructed from a top electrode of
massm and areaA that is suspended on a linear elastic spring
with stiffnessk, above a fixed bottom electrode. The bottom
electrode is coated with a dielectric layer of thicknessd0, and
the initial gap between the top electrode and the dielectric is
g. The two electrodes constitute a deformable capacitor. The
fixed bottom electrode is electrically grounded and a voltage
V or a chargeQ may be applied to the top electrode (charge
actuation has been implemented and used to extend the travel
range of electrostatic actuators [20,21]).
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Fig. 1. Schematic view of the parallel-plates actuator with a dielectric
layer coating the bottom electrode

The electromechanical response of the parallel-plates actu-
ator when it is driven by chargeQ is determined by the poten-
tial of the system

ψQ(x,Q) =
1
2
kx2 +

1
2

Q2

C(x)
(1)

wherex is the DOF of the movable top electrode andC(x)
is the capacitance of the system. The two terms on the right
hand side of (1) are the mechanical potential of the suspending
spring and the electrostatic potential of the deformable capac-
itor. The capacitance of the deformable capacitor is given by

C(x) =
ε0A

g + d0/εr − x
(2)

whereε0 is the permittivity of free space andεr is the rela-
tive permittivity of the dielectric layer. In this work we only
consider linear capacitors for which the capacitance is equal to
the ratio between charge and voltage (Q = CV ). Also in this
work it is assumed that the lateral dimensions of all capacitors
are much larger than the nominal gap between the capacitor
electrodes. For brevity, the effect of fringing fields is not in-
cluded in the analysis, though many simplified approximations
for specific geometries are available in the literature (e.g. [22]).

The potential of the system may be rewritten in the follow-
ing normalized form

ψ̃Q =
1
2
x̃2 +

1
2
(1 + ξ − x̃)Q̃2 (3)

where

ψ̃Q =
ψQ

kg2
, x̃ =

x

g
, ξ =

d0

gεr
, Q̃2 =

1
ε0Akg

Q2. (4)

The potential is a function of the two state variables of the sys-
tem x̃ andQ̃. The reactive mechanical force that is required
to hold the system at any given state is given by the partial
derivative of the potential with respect to the mechanical DOF

f̃Q =
∂ψ̃Q

∂x̃
= x̃− 1

2
Q̃2. (5)

However, the whole point in electrostatic actuation is to drive
the movable electrode without applying any external mechan-
ical forces. The conditioñfQ = 0 yields the equilibrium state
of the system

f̃Q = x̃− 1
2
Q̃2 = 0. (6)

The stability of this equilibrium state is determined by the par-
tial derivative of the reactive force with respect to the DOF

K̃Q =
∂f̃Q

∂x̃
= 1. (7)

The system is stable for̃KQ > 0, is unstable forK̃Q < 0,
and is critically stable for̃KQ = 0. Since the stiffness (7) is
positive, it follows that the system is always stable. The equi-
librium curve of the system is illustrated in Fig. 2.

Fig. 2. Equilibrium curve of the charge-driven parallel-plates actuator.
The displacement is a monotonic function of charge and the response

is stable

When the parallel-plate actuator is driven by voltage, the
potential of the voltage source (ψbattery = −QV ) can be
added to the potential of the system to define thetotal poten-
tial of the system. The total potential is a function of the two
state variables of the system̃x andṼ . The normalized form of
the total potential of the system is given by

ψ̃V =
1
2
x̃2 − 1

2
Ṽ 2

1 + ξ − x̃
(8)

where

ψ̃V =
ψV

kg2
, Ṽ 2 =

ε0A

kg3
V 2. (9)

As before, the reactive mechanical force that is required to hold
the system at any given state is the partial derivative of the total
potential with respect to the DOF̃fV = ∂ψ̃V /∂x̃. The equilib-
rium state of the system is obtained by setting the mechanical
reactive force to zero

f̃V = x̃− 1
2

Ṽ 2

(1 + ξ − x̃)2
= 0. (10)
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The stability of this equilibrium state is determined by the par-
tial derivative of the reactive force with respect to the DOF

K̃V =
∂f̃V

∂x̃
= 1− Ṽ 2

(1 + ξ − x̃)3
. (11)

The voltage can be extracted from the equilibrium equation
(10) and substituted into (11) to yield the stiffness at equilib-
rium states

K̃V =
1 + ξ − 3x̃

1 + ξ − x̃
. (12)

The system is stable for̃KV > 0, is unstable forK̃V < 0, and
is critically stable forK̃V = 0. It follows that the system is
stable forx̃ < 1

3 (1 + ξ), is unstable for̃x > 1
3 (1 + ξ), and is

critically stable at̃x = 1
3 (1 + ξ). The equilibrium curve of the

system is illustrated in Fig. 3.

Fig. 3. Equilibrium curve of the voltage-driven parallel-plates actua-
tor. The stable equilibrium (solid) and unstable equilibrium (dashed)

coincide at the pull-in state

The displacement of the charge driven actuator is a mono-
tonic function of the applied charge. In contrast, the voltage
driven actuator has an equilibrium state only if the applied volt-
age is lower than the maximal valuẽV 2 ≤ 8

27 (1+ξ)3. For volt-
ages above this value the system has no equilibrium state and
the electrodes of the actuator collapse into contact. The maxi-
mal voltage for which equilibrium exists is the Pull-In voltage.
For voltages below the pull-in voltage the equilibrium curve
has two solutions: a stable solution (solid line in Fig 3) and an
unstable solution (dashed line). At the pull-in point, where the
voltage is maximal, the stiffness of the system vanishes and the
two branches coincide.

For the parallel-plates actuator the pull-in parameters can
be derived by setting̃KV = 0 in (11) and solving it together
with (10) to yield

x̃Spi =
1
3
(1 + ξ), ṼSpi =

√
8
27

(1 + ξ)3/2. (13)

It can be shown that the pull-in state can be derived by any one
of the following definitions: 1) where the voltage is maximal
along the equilibrium curve, 2) where the stable and unstable

branches of the equilibrium coincide, 3) where the stiffness
along the equilibrium curve vanishes. It can be shown that all
definitions are equivalent [23].

2.2. Static response of the tilt-plate actuator.To demon-
strate that pull-in can also occur in electrostatic actuators that
are driven by charge, the tilt-plate actuator is next analyzed, us-
ing the same methodology as in the previous sub-section. The
tilt-plate actuator is schematically illustrated in Fig. 4. This ac-
tuator is constructed from a rectangular plate electrode that is
suspended on a torsion spring above a fixed bottom electrode.
The top electrode has a single angular degree-of-freedomθ,
and the stiffness of the spring iskθ. The bottom electrode is
coated with a dielectric layer of thicknessd0 and relative per-
mittivity εr. In the unloaded state of the system the top elec-
trode is separated from the dielectric layer by a free-space gap
g. The top electrode is subjected to a charge or voltage and the
bottom electrode is grounded.

The two electrodes form a deformable capacitor with ca-
pacitance

C(θ) =

L∫

0

ε0b

g + d0/εr − xθ
dx

= −ε0bL

g

1

θ̃
ln

(
1 + ξ − θ̃

1 + ξ

) (14)

whereb is the plate width,L is its length, and

θ̃ =
L

g
θ. (15)

Fig. 4. Schematic view of the tilt-plate actuator with a dielectric layer
coating the bottom electrode

For the charge-driven tilt-plate actuator the potential, equi-
librium equation, and stiffness are given by

ψ̃Q =
1
2
θ̃2 − 1

2
θ̃

[
ln

(
1 + ξ − θ̃

1 + ξ

)]−1

Q̃2 (16)
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f̃Q = θ̃ − 1
2


 1

ln
(

1+ξ−θ̃
1+ξ

)

+
θ̃

(1 + ξ − θ̃)ln
(

1+ξ−θ̃
1+ξ

)2


 Q̃2 = 0

(17)

K̃Q = 1−




2θ̃ + (2 + 2ξ − θ̃)ln
(

1+ξ−θ̃
1+ξ

)

2(1 + ξ − θ̃)2ln
(

1+ξ−θ̃
1+ξ

)3


 Q̃2 (18)

where

ψ̃Q =
L2

kθg2
ψQ, Q̃2 =

L

kθgε0b
Q2, f̃Q =

∂ψ̃Q

∂θ̃
, K̃Q =

∂f̃Q

∂θ̃
.

(19)
The equilibrium states of the system are illustrated in Fig. 5.
Even though the actuator is driven by charge, its equilibrium
curve shows that there is a limit to the applied charge for which
equilibrium can be achieved. Below a critical value of the ap-
plied charge, the system has one stable equilibrium state (solid
line) and one unstable equilibrium state (dashed line). Above
the critical charge the system has no equilibrium state, and at
the critical charge the system is critically stable and the two
electrodes can spontaneously collapse into contact. This criti-
cal state is the static charge-actuation pull-in state, which may
be computed by setting̃KQ = 0 in (18) and solving it together
with (17) to yield

θ̃Spi = 0.71065(1 + ξ), Q̃2
Spi = 1.7977(1 + ξ). (20)

Fig. 5. Equilibrium curve of the charge-driven tilt-plates actuator. The
stable equilibrium (solid) and unstable equilibrium (dashed) coincide

at the pull-in state

When the tilt-plate actuator is driven by voltage, its total
potential, equilibrium equation, and stiffness are given by

ψ̃V =
1
2
θ̃2 +

1
2

1

θ̃
ln

(
1 + ξ − θ̃

1 + ξ

)
Ṽ 2 = 0 (21)

f̃V = θ̃ − 1
2

[
1

θ̃2
ln

(
1 + ξ − θ̃

1 + ξ

)
+

1

θ̃(1 + ξ − θ̃)

]
Ṽ 2 = 0

(22)

K̃V = 1+

[
1

θ̃3
ln

(
1 + ξ − θ̃

1 + ξ

)
+

2 + 2ξ − 3θ̃

2θ̃2(1 + ξ − θ̃)2

]
Ṽ 2 = 0

(23)
where

ψ̃V =
L2

kθg2
ψV , Ṽ 2 =

ε0bL
3

kθg3
V, f̃V =

∂ψ̃V

∂θ̃
, K̃V =

∂f̃V

∂θ̃
.

(24)
The equilibrium states of the system are illustrated in Fig. 6.
This equilibrium curve resembles that of the voltage-driven
parallel-plates actuator (Fig. 3). The pull-in state can be com-
puted by settingK̃V = 0 in (23) and solving it together with
(22) to yield

θ̃Spi = 0.44042(1 + ξ), Ṽ 2
Spi = 0.82745(1 + ξ)3. (25)

Fig. 6. Equilibrium curve of the voltage-driven tilt-plates actuator

In the charge-driven parallel-plates actuator pull in does
not occur because the electrostatic force is proportional to the
charge which is uniformly distributed over the electrodes (the
effect of fringing fields is not considered in this work). In con-
trast, the electrostatic moment that drives the tilt-plate actuator
is affected not only by the applied charge but also by the charge
distribution over the electrodes. The charge pull-in instability
results from charge redistribution. As charge is increased the
tilt angle increases and a larger portion of the charge concen-
trates in regions where the actual gap is smaller (i.e. farther
away from the axis of rotation). This charge concentration be-
comes unstable as the pull-in charge is approached.

Though many electrostatic actuators are modelled as ef-
fective parallel-plates (e.g. [24]), in many actuators (e.g. the
clamped-clamped beam actuator [25]) the charge distribution
is far from being uniform, and charge pull-in may occur. This
is demonstrated on the clamped-clamped beam actuator in the
next sub-section.
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2.3. Static response of the clamped-clamped beam actua-
tor. RF-MEMS is an important emerging field, and currently
promising applications in this field are Ohmic and capacitive
micro-switches [8,10,11]. In these electrostatic switches the
pull-in instability is utilized to achieve rapid transition between
two states of the system. Efficient modelling tools that can ac-
curately predict the pull-in parameters of electrostatic switches
are required to ensure a successful design.

In this sub-section, the static response of a charge-driven
and a voltage-driven clamped-clamped beam actuator is ana-
lyzed. A schematic view of the clamped-clamped beam actu-
ator is presented in Fig. 7. The deformable bridge structure
is clamped on both edges and is suspended over a fixed Co-
Planar Wave-guide (CPW [8]). The central bottom electrode
(i.e. the line of the CPW) is coated by a dielectric layer and
serves as the driving electrode.

The clamped-clamped beam actuator may not be modelled
as a single DOF system. Due to the nonlinear nature of elec-
trostatic forces and additional nonlinear effects, simulation of
the electromechanical response of this system requires the use
of numerical computation of approximate solutions. In this
section a strategy for increasing the efficiency of the numer-
ical computation is presented. It is simpler to first consider
the response of the voltage-driven system. Once the response
of the voltage-driven system has been derived, the response of
the charge-driven system can be obtained at a small additional
effort. Therefore, from this point on, for all systems, voltage
actuation will be considered before charge actuation.

The equilibrium equation of the voltage driven clamped-
clamped beam actuator is given by

E∗I
d4y

dx4
− EA


 1

L

L∫

0

1
2

(
dy

dx

)2

dx


 d2y

dx2
= fE (26)

where

fE =





0 for 0 < x < (1− α)L/2
1

2

ε0bV
2

(g + d0/εr − y)2
for (1− α)L/2 ≤ x ≤ (1 + α)L/2

0 for (1 + α)L/2 < x < L

.

(27)

Herey(x) is the deflection of the beam andx is the coordi-
nate along the beam axis,E∗ is the effective elastic modulus in
bending,I = bh3/12 is the second moment of the beam cross-
section whereb andh are the cross-section width and height,
E is the Young modulus of the beam material,A is the cross-
section area,L is the beam length andg is the nominal gap
between the electrodes. For a thin beam (i.e.h ¿ b) the effec-
tive elastic modulus in bending is given byE∗ = E/(1 − ν2)
whereν is the Poisson ratio.

The three terms in (26) are the distributed forces due to:
bending, membrane stress stiffening, and electrostatic attrac-
tion. The normalized form of the equilibrium equation is given
by

d4ỹ

dx̃4
− 6

E

E∗ g̃2




1∫

0

(
dỹ

dx̃

)2

dx̃


 d2ỹ

dx̃2
= f̃E (28)

where

f̃E =





0 for 0 < x̃ < (1− α)/2
Ṽ 2

(1 + ξ − ỹ)2
for (1− α)/2 ≤ x̃ ≤ (1 + α)/2

0 for (1 + α)/2 < x̃ < 1
(29)

and

x̃ =
x

L
, ỹ =

y

g
, g̃ =

g

h
, Ẽ =

E

E∗ , Ṽ 2 =
ε0bL

4

2E∗g3I
V 2. (30)

The nonlinear equilibrium equation (28) can be solved nu-
merically for a given value of applied voltage. By iteratively
increasing the applied voltage and ensuring that the solution
converges to a stable equilibrium, the pull-in state may be ap-
proached. However, as the pull-in voltage is approached and
the system becomes unstable, the convergence of the numeri-
cal solution vanishes [25]. Therefore, extraction of the pull-in
parameters with reasonable accuracy will require a very long
computation time.

Recently an efficient algorithm for extracting the pull-in
parameters was proposed [25]. This algorithm is based on dis-
placement iterations rather than voltage iterations. In the fol-
lowing, a simplified form of this algorithm is presented.

Fig. 7. Schematic view of a typical RF-MEMS capacitive switch showing the clamped-clamped beam actuator with geometrical details of the
cross-section. The switch is driven by the central bottom electrode which is coated by a dielectric insulator
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In the displacement iteration approach, the displacement
of a pre-chosen point in the system is postulated. For example,
the deflectionyc of the beam centre (Fig. 7) may be arbitrarily
set to any value in the range0 < ỹc < 1. A simple computa-
tion of the equilibrium state (when no voltage is applied) will
yield the mechanical reactive force that is required to maintain
the subscribed deflection at this point. Then, for each postu-
lated value ofyc, the value of the applied voltage that nullifies
this reactive force may be computed. The resulting equilib-
rium state is stable because the deflectionỹc is fixed. However,
since the clamped-clamped beam is only subjected to an elec-
trostatic force and the reactive force at the pre-chosen point is
zero, this equilibrium state is also an equilibrium state of the
original problem.

In the displacement iterations approach, equivalent prob-
lems in which the deflection of a pre-chosen point is iter-
ated are solved instead of solving the voltage-driven system.
Each of the equivalent problems is stable and therefore the
displacement-iteration computation rapidly converges to all
equilibrium states of the voltage-driven system (both stable
and unstable) [25].

Figure 8 presents the equilibrium curve of the voltage-
driven clamped-clamped beam actuator, forg̃ ¿ 1, Ẽ = 1,
ξ = 0.01 andα = 0.3. The pull-in parameters of the voltage-
driven clamped-clamped beam actuator are found to be

ỹc Spi = 0.358, ṼSpi = 10.617. (31)

For any of the given states, the normalized capacitance of the
system can be readily computed by

C̃ =

(1+α)/2∫

x̃=(1−α)/2

1
1 + ξ − ỹ

dx̃. (32)

Then, for any equilibrium state the normalized charge is given
by

Q̃ = C̃Ṽ (33)

where

Q̃2 =
1
2

L4

ε0bE∗Ig
Q2. (34)

The displacement iteration enables to compute the entire equi-
librium curve of the voltage-driven actuator (stable and unsta-
ble alike). Once this has been done, it is quite easy to com-
pute the charge associated with each equilibrium state, and at
a negligible computational effort, obtain the equilibrium curve
of the charge-driven actuator.

Figure 8 presents the equilibrium curve of the voltage-
driven clamped-clamped beam actuator, for the caseg̃ ¿ 1,
ξ = 0.01 andα = 0.3. The pull-in parameters of the charge-
driven clamped-clamped beam actuator are found to be

ỹc Spi = 0.892, Q̃Spi = 7.056. (35)

The electromechanical response of the clamped-clamped beam
actuator with a central electrode (α = 0.3) may seem rather
similar to that of the parallel-plates actuator. However, the re-
sponse under charge actuation reveals that charge distribution

is not uniform (as may be expected), and that charge pull-in
may occur.

Fig. 8. Equilibrium curve of the charge-driven and voltage-driven
clamped-clamped beam actuator (forg̃ ¿ 1, Ẽ = 1, ξ = 0.01 and

α = 0.3)

3. Dynamic response of electrostatic actuators
The analysis presented in the previous section is often used to
design electrostatic switches. However, the response of elec-
trostatic switches is far from being quasi-static, and the effect
of inertial forces must be considered. The most common way
of driving electrostatic switches is subjecting them to a step-
function of charge or voltage, when they are at rest in the un-
loaded state. In this study we only consider actuators in which
damping forces are negligible. This allows us to consider the
shortest switching time and the lowest values of charge or volt-
age that are sufficient to achieve a switching response. The ef-
fect of damping is predictable in the sense that it slows the dy-
namic response and makes it closer to the quasi-static response
considered earlier.

In this section we are specifically interested in the pull-in
instability within the context of a dynamic response. In this
section we present a method for estimating the dynamic re-
sponse of un-damped electromechanical systems in which we
only consider static states of the system. This method yields
exact results in the case of systems with a single DOF, and
yields an approximation of the pull-in state in the case of ac-
tuator with more than one DOF. For brevity, this method is
henceforth referred to by its acronym DRAUSS which stands
for Dynamic Response Analysis Using Static States.

3.1. Dynamic response of the parallel-plates actuator.
Now, we consider the un-damped dynamic response of the
parallel-plate actuator illustrated in Fig. 1. The dynamic re-
sponse of the actuator when it is subjected to a step-function
voltage, is derived from the Hamiltonian of the system given
by [18]

HV =
1
2
mẋ2 +

1
2
kx2 − ε0A

2
(
g + d0

εr
− x

)V 2 (36)
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wherem is the mass of the movable electrode andẋ is its ve-
locity. The Hamiltonian is the sum of the kinetic energy, the
elastic potential of the suspension, and the electrostatic poten-
tial of the deformable capacitor and of the voltage source.

The Hamiltonian may be rewritten in the normalized form

H̃V =
1
2

˙̃x
2

+
1
2
x̃2 − 1

2
Ṽ 2

1 + ξ − x̃
(37)

where

H̃V =
HV

kg2
, t̃ =

√
k

m
t, ˙̃x =

dx̃

dt̃
. (38)

The location of the movable electrode as a function of time
can be computed from the momentum equation that is derived
from the Hamiltonian in the form

¨̃x = −∂H̃

∂x̃
= −x̃ +

1
2

Ṽ 2

(1 + ξ − x̃)2
(39)

where
¨̃x =

d2x̃

dt̃2
. (40)

The momentum equation (39) can be integrated twice in time
to find the displacement of the electrode as a function of time
x̃(t̃). Figure 9 illustrates the trajectory of the top electrode
for several values of applied voltage. These simulation re-
sults were obtained by numerical time-integration of (39) using
MATLAB r.

Fig. 9. Dynamic response of the voltage-driven parallel-plates actu-
ator for various values of applied voltage. For voltages below the
dynamic pull-in voltagẽV = ṼDpi the response is periodic (dashed
lines) and for voltages above this critical value the response is non-

periodic (solid)

Below a critical value of the applied voltage, the dynamic
response of the actuator is periodic. For voltages above this
critical value, the response is non-periodic, the velocity of the
movable electrode is always positive, and it eventually col-
lapses into contact with the fixed electrode. When the critical
voltage is applied, the movable electrode converges to an un-
stable equilibrium state [18]. This critical dynamic state is the

Dynamic Pull-in state of the system and it can be computed by
using the DRAUSS method described in the following.

In this work damping is neglected and accordingly, once
the voltage is applied (at̃t = 0 when x̃ = 0 and ˙̃x = 0),
the Hamiltonian is unchanged(H̃Ṽ = H̃Ṽ (t̃=0)). Setting

H̃Ṽ (t̃=0) = −Ṽ 2/(1 + ξ)/2 results in an energy constraint on
the dynamic response, as formulated by the following dynamic
response function

DṼ =
1
2

˙̃x
2

+
1
2
x̃2 − 1

2
Ṽ 2 x̃

(1 + ξ − x̃)(1 + ξ)
= 0. (41)

The dynamic pull-in state of the parallel-plates actuator is a
stagnation state which can be computed by setting˙̃x = 0 in
(41) to yield the stagnation curve of the system

SṼ =
1
2
x̃2 − 1

2
Ṽ 2 x̃

(1 + ξ − x̃)(1 + ξ)
= 0. (42)

The solution of (42) yields the stagnation displacements for a
given value ofṼ . The three solutions of (42) are

x̃I = 0 (43)

x̃II =
(1 + ξ)2 −

√
(1 + ξ)4 − 4(1 + ξ)Ṽ 2

2(1 + ξ)
(44)

x̃III =
(1 + ξ)2 +

√
(1 + ξ)4 − 4(1 + ξ)Ṽ 2

2(1 + ξ)
. (45)

The first solution is the trivial solution (solid line at the origin
in Fig. 10); the second solution is a physical branch of the stag-
nation curve (thick solid), and the third solution is the unphys-
ical branch (thick dashed). The physical and unphysical stag-

nation states coalesce when
√

(1 + ξ)4 − 4(1 + ξ)Ṽ 2 = 0. At
this point the stagnation curve and the equilibrium curve inter-
sect, and the voltage along the stagnation curve is maximal.

Fig. 10. Equilibrium (thin lines) and stagnation (thick lines) curves of
the voltage-driven parallel-plates actuator

Accordingly, the dynamic pull-in state of the parallel-
plates actuator is found to be

x̃Dpi =
1
2
(1 + ξ), ṼDpi =

1
2
(1 + ξ)3/2. (46)

Bull. Pol. Ac.: Tech. 53(4) 2005 379



D. Elata

The dynamic pull-in point can be computed in one of three
equivalent ways [18]: 1) The point of maximal voltage along
the stagnation curve. 2) The point where the physical and un-
physical branches of the stagnation curve coalesce. 3) The in-
tersection point of the equilibrium and stagnation curves.

The presented method of analysis is computationally effi-
cient because it only considers static states.

When the parallel-plates actuator is driven from its un-
loaded state by application of a step-function of charge, the
Hamiltonian of the system is given by

HQ =
1
2
mẋ2 +

1
2
kx2 +

g + d0
εr
− x

2ε0A
Q2. (47)

The last term on the right hand side of (47) is the electrostatic
potential of the deformable capacitor. The Hamiltonian may
be rewritten in the normalized form

H̃Q =
1
2

˙̃x2 +
1
2
x̃2 +

1
2
(1 + ξ − x̃)Q̃2 (48)

whereQ̃ is given in (24). Once the charge is applied (att̃ = 0
whenx̃ = 0 and ˙̃x = 0), the Hamiltonian is unchanged. Set-
ting H̃Q = H̃Q(t̃=0) = (1 + ξ)Q̃2 yields an energy constraint
on the dynamic response as formulated by the following dy-
namic response function

DQ =
1
2

˙̃x
2

+
1
2
x̃2 − 1

2
x̃Q̃2 = 0. (49)

The momentum equation that describes the motion of the top
electrode may be derived from the Hamiltonian in the form

¨̃x =
∂H̃

∂x̃
= −x̃ +

1
2
Q̃2. (50)

The solution of this momentum equation is

x̃ =
1
2
(1− cos(t̃))Q̃2. (51)

This is a harmonic oscillation about the static equilibrium state
x̃ = 1

2 Q̃2. It follows that the dynamic response of the charge-
driven parallel-plates actuator is a stable periodic response for
which the amplitude is a monotonically increasing function of
the applied charge.

3.2. Dynamic response of the tilt-plate actuator.The dy-
namic electromechanical response of the tilt-plate actuator
when it is driven by a step-function of voltage, is derived from
the Hamiltonian given by

HV =
1
2
Iθ̇ +

1
2
kθθ

2 − 1
2
CV 2 = −1

2
C(θ=0)V

2. (52)

The first term on the left hand side of (52) is the kinetic energy
of the top plate-electrode whereI is its moment of inertia and
the other two terms are the total potential of the actuator. As
damping is ignored, once the step-function voltage is applied,
the Hamiltonian remains unchanged (right-hand side of (52)).

The normalized form of the Hamiltonian is given by

H̃V =
1
2

˙̃
θ2 +

1
2
θ̃2 +

1
2

1

θ̃
ln

(
1 + ξ − θ̃

1 + ξ

)
Ṽ 2 = −1

2
1

1 + ξ
Ṽ 2

(53)

where
˙̃
θ =

dθ̃

dt̃
, t̃ =

√
kθ

I
t. (54)

The equation of motion can be derived from the Hamiltonian
in the form

¨̃
θ =

∂H̃

∂θ̃
= −θ̃ +

Ṽ 2

2θ̃

[
1

θ̃
ln

(
1 + ξ − θ̃

1 + ξ

)
+

1

1 + ξ − θ̃

]
.

(55)
The dynamic response of the tilt-plate actuator, for various ap-
plied voltages is illustrated in Fig. 11. Below a critical value
of the step-function voltage the response is periodic (dashed
lines), and for voltages that are higher than this critical value
the response is a-periodic (solid lines) and the top electrode
impacts the bottom electrode. The critical value of the applied
voltage is the dynamic pull-in voltage. When the dynamic pull-
in voltage is applied, the top electrode reaches a stagnation
state that separates the periodic and a-periodic responses.

Fig. 11. Dynamic response of the voltage-driven tilt-plate actuator for
various values of applied voltage. For voltages below the dynamic
pull-in voltage the responsẽV = ṼDpi is periodic (dashed lines)
and for voltages above this critical value the response is non-periodic

(solid)

The dynamic pull-in voltage is derived from the dynamic
response function which is obtained from (53) by collecting all
terms on one side of the equation.

DV =
1
2

˙̃
θ2+

1
2
θ̃2+

1
2

[
1

θ̃
ln

(
1 + ξ − θ̃

1 + ξ

)
+

1
1 + ξ

]
Ṽ 2 = 0.

(56)
In the periodic response, the top electrode has stagnation states
in which the velocity of the top plate vanishes. To this end, the

stagnation function is derived by setting˙̃θ = 0 in (56)

SV =
1
2
θ̃2 +

1
2

[
1

θ̃
ln

(
1 + ξ − θ̃

1 + ξ

)
+

1
1 + ξ

]
Ṽ 2 = 0. (57)

The stagnation function relates the stagnation tilt angle and the
applied voltage. The stagnation curve is illustrated in Fig. 12
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where thick solid lines mark the origin and physical stagnation
states, and the thick dashed line marks the unphysical branch
of the stagnation function. To compute the point where the
stagnation and equilibrium curves intersect, the voltage is ex-
tracted from (22) and substituted into (57). The solution of the
resulting equation is

θ̃Dpi = 0.64501(1 + ξ), Ṽ 2
Dpi = 0.68692(1 + ξ)3. (58)

Fig. 12. Equilibrium (thin lines) and stagnation (thick lines) curves of
the voltage-driven tilt-plates actuator

When the tilt-plate actuator is driven from its unloaded
state by application of a step-function of charge, the Hamil-
tonian of the system is given by

HQ =
1
2
Iθ̇2 +

1
2
kθθ

2 +
1
2

Q2

C(θ)
=

1
2

Q2

C(0)
. (59)

Once the step-function of charge is applied, the Hamiltonian
remains unchanged (right-hand side of (59)). The normalized
form of the Hamiltonian is given by

H̃Q =
1
2

˙̃
θ2 +

1
2
θ̃2 − 1

2
θ̃

[
ln

(
1 + ξ − θ̃

1 + ξ

)]−1

Q̃2

=
1
2
(1 + ξ)Q̃2

(60)

where ˙̃
θ andt̃ are defined in (54). The equation of motion can

be derived from the Hamiltonian in the form

¨̃
θ = −∂H̃

∂θ̃

= −θ̃ +
1
2


 1

ln
(

1+ξ−θ̃
1+ξ

) +
θ̃

(1 + ξ − θ̃)ln
(

1+ξ−θ̃
1+ξ

)2


 Q̃2.

(61)
The dynamic response of the tilt-plate actuator, for various ap-
plied charges is illustrated in Fig. 13. Below a critical value
of the step-function charge, the response is periodic, and for
charges that are higher than this critical value, the response is

a-periodic and the top electrode impacts the bottom electrode.
The critical value of the applied charge is the dynamic pull-in
charge. When the dynamic pull-in charge is applied, the top
electrode reaches a stagnation state that separates the periodic
and a-periodic responses.

Fig. 13. Dynamic response of the charge-driven tilt-plate actuator for
various values of applied charge. For charges below the dynamic pull-
in chargeQ̃ = Q̃Dpi the response is periodic (dashed lines) and for
voltages above this critical value the response is non-periodic (solid)

The dynamic response function of the actuator is given by

DQ =
1
2

˙̃
θ2 +

1
2
θ̃2

−1
2



θ̃

[
ln

(
1 + ξ − θ̃

1 + ξ

)]−1

+ (1 + ξ)



 Q̃2 = 0.

(62)

The stagnation function is derived by setting˙̃θ = 0 in (62)

SQ =
1
2
θ̃2

−1
2



θ̃

[
ln

(
1 + ξ − θ̃

1 + ξ

)]−1

+ (1 + ξ)



 Q̃2 = 0.

(63)
The stagnation function relates the stagnation tilt angle and the
applied charge. The stagnation curve is illustrated in Fig. 14,
where thick solid lines mark the origin and physical stagnation
states, and the thick dashed line marks the unphysical branch
of the stagnation function.

To compute the point where the stagnation and equilibrium
curves intersect, charge is extracted from (17) and substituted
into (63). The solution of the resulting equation is

θ̃Dpi = 0.91635(1 + ξ), Q̃2
Dpi = 1.3314(1 + ξ). (64)
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Fig. 14. Equilibrium (thin lines) and stagnation (thick lines) curves of
the charge-driven tilt-plates actuator

3.3. Dynamic response of the clamped-clamped beam ac-
tuator. In this sub-section we analyze the dynamic response
of a more realistic model of an electrostatic switch. The nor-
malized form of the equation of motion of the voltage-driven
clamped-clamped beam actuator is given by

∂2ỹ

∂t̃2
= −∂4ỹ

∂x̃4
+ 6Ẽg̃2




1∫

0

(
∂ỹ

∂x̃

)2

dx̃


 ∂2ỹ

∂x̃2
+ f̃E (65)

where f̃E is given by (29),t̃ =
√

E∗I
γL4 t, and the other nor-

malized variables are given by (30). The initial and boundary
conditions of the system are

ỹ =
dỹ

dt̃
= 0 for t̃ = 0

ỹ =
dỹ

dx̃
= 0 at x̃ = 0 and x̃ = 1.

(66)

The equation of motion may be numerically integrated in time
to compute the displacement as function of time. Figure 15 il-
lustrates the trajectory of the beam center for several values of
the applied voltage (for̃g ¿ 1, Ẽ = 1, ξ = 0.01 andα = 0.3).

This figure resembles the dynamic response of the parallel-
plates actuator presented in Fig. 9. The waviness that may be
observed in the trajectory curves is due to higher-mode vibra-
tions of the continuous beam. To extract the dynamic pull-in
voltage, many simulation of the time response are executed.
From this time integration it is found that the dynamic pull-in
voltage of the system is̃VDpi = 9.745.

Next, we compute the dynamic pull-in voltage using the
DRAUSS approach. The normalized form of the Hamiltonian
of the system is given by

H̃V =
1
2

1∫

0

(
dỹ

dt̃

)2

dx̃ +
1
2

1∫

0

(
d2ỹ

dx̃2

)2

dx̃

+6Ẽg̃2




1∫

0

1
2

(
dỹ

dx̃

)2

dx̃




2

−Ṽ 2

(1+α)/2∫

(1−α)/2

1
1 + ξ − ỹ

dx̃

(67)

where

H̃ =
L3

E∗Ig2
H. (68)

The normalized forms of the dynamic response function and
of the stagnation function, are given by

D̃V =
1
2

1∫

0

(
dỹ

dt̃

)2

dx̃ +
1
2

1∫

0

(
d2ỹ

dx̃2

)2

dx̃

+6Ẽg̃2




1∫

0

1
2

(
dỹ

dx̃

)2

dx̃




2

−Ṽ 2

(1+α)/2∫

(1−α)/2

ỹ

(1 + ξ)(1 + ξ − ỹ)
dx̃ = 0

(69)

S̃V =
1
2

1∫

0

(
d2ỹ

dx̃2

)2

dx̃ + 6Ẽg̃2




1∫

0

1
2

(
dỹ

dx̃

)2

dx̃




2

−Ṽ 2

(1+α)/2∫

(1−α)/2

ỹ

(1 + ξ)(1 + ξ − ỹ)
dx̃ = 0.

(70)

Figure 16 presents the equilibrium and stagnation curves of the
system. The dynamic pull-in voltage at the intersection of the
equilibrium and stagnation curves is̃VDpi = 9.741 (a 0.04%
error relative to the value extracted from time integration).

In a similar fashion, the dynamic pull-in charge of the
clamped-clamped beam actuator may be computed. For the
actuator with the considered geometry the dynamic pull-in
charge computed by the DRAUSS approach will also be very
close to the value computed by time integration.

The reason that the values computed by the two methods
are so close, is that the electrode extension is limited to the
central section of the beam,α = 0.3. Therefore, the beam
response is rather close to a single DOF parallel-plates actu-
ator. For a wider electrode extension, the difference between
the two computation methods may be larger. In any case, it
has been shown that the dynamic pull-in voltage computed by
the DRAUSS approach is a lower bound for the value that is
extracted by time integration [18].

To emphasize the advantage of the DRAUSS approach, it
is noted that each time integration trajectory presented in Fig.
15 required 20 seconds of CPU time whereas computing both
curves in Fig. 16 only required 1.2 CPU seconds. This demon-
strates the efficiency of the DRAUSS approach relative to time
integration. In the above mentioned simulations, the beam is
discretized by a one-dimensional finite-difference mesh. The
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difference in run time between the two methods for comput-
ing the dynamic pull-in parameters may be expected to dra-
matically increase when the dynamic response of 2D and 3D
models of the system are simulated.

Fig. 15. Dynamic response of the voltage-driven clamped-clamped
beam actuator for various values of applied voltage (forg̃ ¿ 1,

Ẽ = 1 ,ξ = 0.01 andα = 0.3)

Fig. 16. Equilibrium (thin lines) and stagnation (thick lines) curves
of the voltage-driven clamped-clamped beam actuator (forg̃ ¿ 1,

Ẽ = 1 ,ξ = 0.01 andα = 0.3)

4. Discussion
For the parallel-plates actuator the dynamic pull-in voltage is
8% lower than the static pull-in voltage. For the tilt-plate actu-
ator, the dynamic pull-in voltage is 17% lower than the static
pull-in voltage, and the dynamic pull-in charge is 26% lower
than the static pull-in charge. For the clamped-clamped beam
actuator, the dynamic pull-in voltage is lower by 8% relative to
the static pull-in voltage.

When damping is considerable the actuators may be ex-
pected to respond quasi-statically, and higher voltages or

charges (up to the relevant static pull-in values) may be re-
quired to ensure a switching (i.e. pull-in) response.

If the pull-in instability is to be avoided for each of the ac-
tuators over the entire range of possible displacement, the pa-
rameters of the dielectric layer may be chosen such that a full
travel range (i.e.̃x = 1 or θ̃ = 1) is achieved before pull-in oc-
curs. For example, the voltage pull-in of the tilt-plate actuator
occurs at̃θ/(1 + ξ) = 0.44042 andṼ 2/(1 + ξ)3 = 0.82745
Eq. (25). By choosingξ = 0.44042−1 − 1 = 1.2706 a full
travel rangẽθ = 1 can be achieved and pull-in will not occur.
This increase of 227% in the travel range will however require
an increase of 342% in the actuation voltage.

5. Summary

In this work the static and the dynamic pull-in parameters of
electrostatic actuators were considered, for both voltage and
charge actuation. The dynamic pull-in parameters were ex-
tracted by using the DRAUSS method. This method is appli-
cable for systems in which damping may be neglected. The
method is based on static states only and it avoids the neces-
sity of integrating the equilibrium equations in time.

The proposed method was demonstrated on two types of
electrostatic actuators with a single degree-of-freedom, and on
one actuator with a more realistic geometry that must be mod-
elled as a distributed system. When the DRAUSS method is
used to extract the dynamic pull-in parameters of distributed
systems, the simulated dynamic pull-in voltage or charge are
lower bounds of the correct parameters. This is due to the fact
that some kinetic energy associated with higher mode vibra-
tions may always remain in the system, and a total stagna-
tion state may be energetically possible but practically very
unlikely to occur [18].
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