
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 53, No. 1, 2005

Reasoning with limited resources: active logics expressed as
labelled deductive systems

M. ASKER and J. MALEC∗

Department of Computer Science, Lund University,
Box 118 221 00 Lund, Sweden

Abstract. Reasoning with limited computational resources (such as time or memory) is an important problem, in particular
in knowledge-intensive embedded systems. Classical logic is usually considered inappropriate for this purpose as no guarantees
regarding deadlines can be made. One of the more interesting approaches to address this problem is built around the concept of
active logics. Although a step in the right direction, active logics are just a preliminary attempt towards finding an acceptable
solution.

Our work is based on the assumption that labelled deductive systems (LDSs) offer appropriate metamathematical method-
ology to study the problem. As a first step, we have reformulated a pair of active logics systems, namely the memory model
and its formalized simplification, the step logic, as LDSs.

This paper presents our motivation behind this project, followed by an overview of the investigations on meta-reasoning
relevant to this work, and introduces in some reasonable detail the MM system.

Key words: active logic, labelled deductive systems, reasoning with limited resources.

1. Introduction
Reasoning with limited computational resources (such as
time or memory) is an important problem, in particular
in knowledge-intensive embedded systems. Usually a de-
cision, based on a principled reasoning process, needs to
be taken within limited time and taking into account the
limitations of the processing power and resources of the
reasoning system. Therefore symbolic logic is often con-
sidered as an inadequate tool for implementing reasoning
in such systems: logic does not guarantee that all rele-
vant inferences will be made within prescribed time nor
does it allow to limit the required memory resources sat-
isfactorily. The paradigm shift that occurred in Artificial
Intelligence in the middle of 1980s can be attributed to in-
creasing awareness of those limitations inherently present
in the then predominant way of representing and using
knowledge.

Since then there have been some attempts to constrain
the inference process performed in a logical system in a
principled way. One possibility is to limit the expres-
sive power of the first-order logical calculus (as, e.g., in
description logics) in order to guarantee polynomial-time
computability. Another is to use polynomial approxima-
tions of the reasoning process. Yet another is to constrain
the inference process in order to retain control over it.
More details about these lines of research can be found in
Section 3.

One of the more interesting investigations in this area
during the 1990s has focused on logic as a model of an
on-going reasoning process rather than as a static char-

acterization of contents of a knowledge base. It begun
with step-logic and evolved into a family of active log-
ics. The most recent focus of this research is on mod-
elling dialogue and discourse. However, other interesting
applications, like planning or multi-agent systems, have
also been investigated, while some other possibilities still
await analysis. In particular, the possibility of applying
this framework to resource-bounded reasoning in embed-
ded systems is in the focus of our interest.

Finally, one should name the relations to the large
area of belief revision that also investigates the process of
knowledge update rather than the static aspects of logical
theories. However, there has been little attention paid to
possibilities of using this approach in resource-bounded
reasoning – the work has rather focused on the pure non-
monotonicity aspect of knowledge revision process.

The rest of the paper is divided as follows. Section 2
presents the background of the idea leading to our investi-
gation. In Section 3 we discuss the relevant related work.
Section 4 introduces the memory model being the foun-
dation for active logics research. Then Section 5 presents
an LDS formalization of the memory model. Section 6
discusses how the described approach could be used for
planning in real-time for robotic applications. Finally the
conclusions and some suggestion of further work are pre-
sented.

2. Background
The very first idea for this investigation has been born
from the naive hypothesis that in order to be able to use

∗e-mail: jacek@cs.lth.se

69



M. Asker and J. Malec

symbolic logical reasoning in a real-time system context
it would be sufficient to limit the depth of reasoning to
a given, predefined level. This way one would be able to
guarantee predictability of a system using this particular
approach to reasoning. Unfortunately, such a modifica-
tion performed on a classical logical system yields a for-
malism with a heavily modified and in principle unknown
semantics [1]. It would be necessary to relate it to the
classical one in a thorough manner. This task seems very
hard and it is unclear for us what techniques should be
used to proceed along this line. But the very basic idea
of “modified provability”: A formula is a theorem iff it is
provable within n steps of reasoning, is still appealing and
will guide us in our investigations presented below.

The next observation made in the beginning of this
work was that predictability (in the hard real-time sense)
requires very tight control over the reasoning process. In
the classical approach one specifies a number of axioms
and a set of inference rules, and the entailed consequences
are expected to “automagically” appear as results of an
appropriate consequence relation. Unfortunately, this re-
lation is very hard to compute and usually requires expo-
nential algorithms. One possibility is to modify the conse-
quence relation in such way that it becomes computable.
However, the exact way of achieving that is far from obvi-
ous. We have investigated previous approaches (listed in
Section 3) and concluded that a reasonable technique for
doing this would be to introduce a mechanism that would
allow one to control the inference process. One such mech-
anism is available in labelled deductive systems [2].

In its most simple, somewhat trivialized setting a la-
belled deductive system (LDS) attaches a label to every
well-formed formula and allows the inference rules to an-
alyze and modify labels, or even trigger on specific condi-
tions defined on the labels. E.g., instead of the classical
Modus Ponens rule A,A→B

B a labeled deduction system
would use α:A, β:A→B

γ:B , where α, β, γ belong to a well-
defined language (or, even better, algebra defined over
this language) of labels, and where γ would be an appro-
priate function of α and β. If we were to introduce our
original idea of limited-depth inference, then γ could be,
e.g., max(α, β)+1 provided that α and β are smaller than
some constant N .

A similar idea, although restricted to manipulation of
labels which denote time points, has been introduced in
step-logic [3] which later evolved into a family of active
logics [4]. Such a restriction is actually a reasonable first
step towards developing a formal system with provable
computational properties. Active logics have been used so
far to describe a variety of domains, like planning [5], epis-
temic reasoning [6], reasoning in the context of resource
limitations [7] or modelling discourse. We are definitely
interested in pursuing this line of investigations, however
in a manner that is more amenable to metamathemati-
cal investigations. LDS seems to be a perfect technical
choice for that purpose. In particular, various possibili-
ties offered by the freedom of choice of the labelling al-

gebras used to define the inference rules can be studied.
Properties of the consequence relations defined this way
are definitely worth analyzing in order to gather under-
standing of what can be achieved in the resource-limited
setting, and what (semantical) price is paid for this.

3. Related work
The attempts to constrain in a principled way the in-
ference process performed in a logical system have been
done as long as one has used logic for knowledge represen-
tation and reasoning. One possibility is to limit the ex-
pressive power of the first-order logical calculus (as, e.g.,
it is done in case of description logics) in order to guar-
antee polynomial-time computability. There is a number
of theoretical results in this area (see, e.g., [8]) but we are
rather interested in investigations aimed at practical ap-
plications and focusing on computational complexity like,
e.g., [9–11].

Another possibility is to use polynomial approxima-
tions of the reasoning process. This approach is tightly
coupled to the issue of theory compilation. The most
important contributions in this area are [1,12–14]. How-
ever, this approach, although it substantially reduces the
computational complexity of the problem, still does not
provide tight bounds on the reasoning process.

Yet another possibility is to constrain the inference
process in order to retain control over it. An early attempt
has been reported in [15]. The next step in this direction
was the step-logic [3] that evolved into a family of active
logics [4]. Such a restriction is actually a reasonable first
step towards developing a formal system with provable
computational properties. Active logics have been used
so far to describe a variety of domains, however, none of
the proposed systems has overcome the limitation of the
exponential blow-up of the number of formulae produced
in the inference process.

One of the main reasons for problems with describ-
ing resource-bounded reasoning is that the formal sys-
tems used for this purpose are too powerful. Quite often
such a system is based on some propositional or first-order
language extended with a modality denoting belief. This
immediately leads to the omniscience problem: use of any
normal modal logic equipped with the K axiom

|= ¤(α → β) → (¤α → ¤β)

and the necessitation rule
α

¤α

will force the agent using it for its reasoning to believe all
logical consequences of its current beliefs (see, e.g., [16]).
This means that its set of beliefs will necessarily be infinite
and it must always be consistent: apparently non-realistic
assumptions regarding limited reasoners.

There exists a number of approaches that try to deal
with the problem of omniscience. Speaking generally, any
such solution must address the need to model bounded re-

70 Bull. Pol. Ac.: Tech. 53(1) 2005



Reasoning with limited resources: active logics expressed as labelled deductive systems

sources of agents and, independently, its incomplete rea-
soning mechanisms. The solutions might be roughly clas-
sified into following groups:

• Weakening the system by using a non-standard se-
mantics;

• Formally distinguishing explicit and implicit knowl-
edge;

• Removing closure properties;
• Syntactification.

The first two suffer from partial logical omniscience [17],
although they constitute a step in the right direction.

A good example of the second line of thought is
the logic of implicit and explicit belief proposed by
Levesque [15]. His idea consists of distinguishing explicit
beliefs, i.e., those currently available explicitly in agent’s
knowledge base; and implicit beliefs, i.e., those entailed by
explicit beliefs, but not (yet) derived. In order to be able
to handle that distinction, the semantics of the classical
epistemic logic must be modified. According to Levesque,
the usual possible worlds semantics is too coarse-grained,
while simple sets of formulae are a too-fine-grained choice.
His semantics is based on situations which are subsets
of possible worlds. The relation between situations is
captured by relevance logic (where implication is weak-
ened to entailment). Unfortunately, partial omniscience
makes this system inappropriate for describing truly lim-
ited agents.

The approach of Fagin, Halpern, Moses and Vardi [16],
captures in a nice way the evolution of an agent’s knowl-
edge. The system consists of the usual knowledge/belief
modalities (Kx, indexed by multiple agents involved),
mixed with the classical temporal operators (Eventu-
ally ♦, Always ¤, Next ©, Until U). The resulting sys-
tem is interpreted on so called runs. The system is still
too powerful for our needs, although it may be modi-
fied in the direction of non-omniscient agents. The same
remarks apply to the recent proposal of van der Hoek
and Wooldridge [18], in which the usual knowledge/belief
modalities (Kx) and the classical temporal operators are
extended with a dynamic-logic-like concept of coopera-
tive actions. The interpretations are based on concurrent
game structures. Although the authors mention the pos-
sibility of describing non-omniscient agents, the main sys-
tem is developed for at least partially omniscient entities.
A similar system, based on active logic, has been proposed
by Grant, Kraus and Perlis [19].

The last system we would like to mention in this con-
text is proposed recently by Ågotnes [17]. His system is
based on ATEL, but does not assume any structure in the
underlying language – the epistemic states of an agent
are purely syntactical structures. Knowledge evolution
mechanisms are modelled using rules; they need not to be
necessarily sound nor complete. Although appealing from
the formal point of view, this system does not provide any
hints about dealing with the computational complexity of
the problem.

There is a growing insight that logic, should it be con-
sidered as a useful tool for building autonomous intelligent
agents, has to be used in a substantially different way than
before. Active logics are one example of this insight, while
other important contributions might be found, e.g., in [20]
or [21].

4. Active logics
Active logics originated from an attempt to formalize a
memory model, inspired by cognitive psychology research,
whichwas studied at theUniversity ofMaryland during the
1980s [22]. The memory model has been first formalized
as step logic. However, this formalisation has left many of
the interesting properties of the model outside its scope.

The memory model (MM later on) consists of five
parts:

• LTM, the long term memory, which contains rules
consisting of pairs of formulae: (trigger, contents).
Semantic retrieval is associative based on trigger for-
mulae.

• STM, the short term memory, which acts as the
current focus of attention. All new inferences must
include a formula from the STM.

• QTM, the quick term memory, which is a technical
device for buffering the next cycle’s STM content.

• RTM, the relevant term memory, which is the repos-
itory for default reasoning and relevance. It contains
formulae which have recently been pushed out of the
STM but still may be important for default resolu-
tion.

• ITM, the intermediate term memory, which contains
all facts which have been pushed out of the STM.
The contents of the ITM provides the history of the
agents reasoning process. ITM may provide support
for goal-directed behaviour.

Fig. 1. The memory model from (after Ref. 22).

Bull. Pol. Ac.: Tech. 53(1) 2005 71



M. Asker and J. Malec

Three of the parts, LTM, STM and ITM, originate
from cognitive psychology research. The other two, QTM
and RTM, have been used by Drapkin, Miller and Perlis,
as an auxiliary technical device. Figure 1 shows how the
parts are connected to each other. Although the details of
the model might be discussed, in particular, debating the
necessity for modules other than the standard short- and
long-term memories, we have based our discussion on the
original MM [22], convinced that the auxiliary parts play
an important technical role. A more detailed explanation
is beyond the scope of this paper and the reader is referred
to the original source. It is a matter of future research
whether simpler memory models could be formalised in
an equally natural way, while retaining the capability of
modeling reasoning with resource limitations.

5. Active logics as an LDS
As the first step of testing our ideas we have chosen the
first active logic, namely the step logic SL7 defined in [3].
It is, in its turn, a simplification of the MM presented
above. It appeared [23] that SL7 can be rather straight-
forwardly formulated as an LDS. Below, we show how this
formalization can be extended to the original MM. None
of the active logic systems defined so far ([7], [24], and
[25]) has been able to faithfully capture its full complexity.
Therefore our first conclusion is that LDS offers a more
expressive mechanism to control deduction. This chapter
is based on MM presentation from [22] and LMM from [26].

5.1. LDS. Traditionally a logic was perceived as a con-
sequence relation on a set of formulae. Problems arising in
some application areas have emphasized the need for con-
sequence relations between structures of formulae, such
as multisets, sequences or even richer structures. This
finer-tuned approach to the notion of a logical system in-
troduces new problems which call for an improved general
framework in which many of the new logics arising from
computer science applications can be presented and inves-
tigated. LDS, labeled deductive systems, was presented
in [2] as such a unifying framework.

The first step in understanding LDS is to understand
the intuitive message, which is the following: Traditional
logics manipulate formulae, while an LDS manipulates
declarative units, i.e., pairs formula : label . The labels
should be viewed as an additional information about the
formulae, which is not encoded inside the formulae, e.g.,
they can contain reliability (in an expert system), where
and how a formula was deduced, or time stamps.

A logic is here a pair (`, S`) where ` is a structured,
possibly non-monotonic consequence relation on a lan-
guage L and S` is an LDS. ` is essentially required to
satisfy no more than identity (i.e. {A} ` A) and a ver-
sion of cut.

A simple form of LDS is the algebraic LDS. There are
more advanced variants, meta-bases, in which the labels
can be complete databases.

An LDS proof system is a triple (A,L,R) where A is
an algebra of labels (with some operations), L is a logical
language and R is a discipline of labeling formulae of the
logic (with labels from the algebra A), together with a
notion of a database and a family of deduction rules and
with agreed ways of propagating the labels via application
of the deduction rules.

5.2. Step logics. Step logic is actually not a single sys-
tem but a family of different logics. Each of the step logics
in the family contains two distinct types of formalisms:
the metatheory SLn, about the reasoning agent and the
agent theory SLn itself, which is step-like. The two theo-
ries together form a step-logic pair < SLn,SLn >.

The subscript n serves to distinguish different versions
of the step logics. The versions differ in the mechanisms
that the agent has at its disposal: self knowledge, time
and retraction. Self knowledge gives the agent the capa-
bility of autoepistemic reasoning. The time mechanism
allows the on-going process of deduction to be part of the
agent’s own reasoning. Retractions can be used to imple-
ment other forms of non-monotonic reasoning. The logic
SL7 contains all three mechanisms mentioned above.

SL7 has been rewritten as an LDS in [23]. Below we
briefly summarize this construction.

In the following definitions, N (the set of natural num-
bers) is used as a model of discrete time. Swff is the set
of all well-formed formulae of the language of predicate
logic. P(S) denotes the power set of the set S. Beliefs
are parameterized by the time taken for their inference.

Definition 1. (Observation function). An obser-
vation function is a function OBS : N → P(Swff ), where
for each i ∈ N the set OBS (i) is finite. If α ∈ OBS (i),
then α is called an i-observation.

Definition 2. (History). A history is a finite tuple
of belief set/observation set pairs; the sets are finite sub-
sets of Swff : << Thm0,OBS (1) >,< Thm1,OBS (2) >
, ..., < Thmi−1,OBS (i) >> .

H will denote the set of all histories. Intuitively, a
history is a conceivable temporal sequence of belief
set/observation set pairs. The inference function extends
the temporal sequence of belief sets by one more step be-
yond the history:

Definition 3. (Inference function). An inference
function is a function INF : H → P(Swff ), where for each
h ∈ H, INF (h) is finite.

We can now define the first type of formalism, the agent
theory:

Definition 4. (SLn-theory). An SLn-theory over
a language L is a triple < L,OBS , INF >, where L is
a first order language, OBS is an observation function
and INF is an inference function. We use the notation
SLn(OBS , INF ) for such a theory (the language L is im-
plicit in the definitions of OBS and INF ).

72 Bull. Pol. Ac.: Tech. 53(1) 2005



Reasoning with limited resources: active logics expressed as labelled deductive systems

Members of the set Swff of well-formed formulae over the
language L are called agent wffs. SLn-theories will often
be called agent theories.

Definition 5. (i-theorem, `i). Let the set
of 0-theorems, denoted Thm0, be empty. For i >
0, let the set of i-theorems, denoted Thmi, be
INF (<< Thm0,OBS (1) >,< Thm1,OBS (2) >, ..., <
Thmi−1,OBS (i) >>). We write SLn(OBS , INF ) `i α
to mean α is an i-theorem of SLn(OBS , INF ).

Intuitively, α is an i-theorem if it can be inferred in i steps
from the observations.

Definition 6. (Meta-theory corresponding to
SLn). Given a theory SLn(OBS , INF ), a correspond-
ing SLn-theory, written SLn(OBS , INF ), is a first-order
theory having binary predicate symbol K, numerals and
names for the wffs in Swff , such that

SLn(OBS , INF ) ` K(i, pαq) iff SLn(OBS , INF ) `i α.

In SLn(OBS ,INF ), K(i, pαq) is intended to express that
α is an i-theorem of SLn(OBS ,INF ).

Theorem 1. (Soundness, [3]). Every step-logic
SLn(OBS , INF ) is sound with respect to step-models.
That is, every i-theorem α of SLn(OBS , INF ) is i-
true in every step-model M of SLn(OBS , INF ), i.e., if
SLn(OBS , INF ) `i α then M |=i α.

A problem with step logics is that the set of beliefs may
grow rapidly. When the memory model was first formal-
ized in step logic, some of its attractive properties were
lost. In particular, in the memory model the short term
memory (STM) simulates a focus of attention. The size
of the STM limits the number of inferences per step and
thus reduces combinatorial explosion which is important
in implementations. In step logics this limitation is lost
so that the number of formulae in each step may increase
exponentially.

5.3. LDS for SL7. In what follows we present a natural
reformulation of SL7 as an LDS.

As labels we use the natural numbers that represent
the time at which a formula has been asserted (observed
or deduced), Slabels

df
= N. The declarative units of the sys-

tem are pairs label : formula. The axioms below, Saxioms ,
express either the time flow or results of observations.

(A1) i : Now(i) for all i ∈ N Clock
(A2) i : α for all α ∈ OBS (i), i ∈ N

Observations

The inference rules used in the system, RSL7 , come from
INFB defined in [3], although in somewhat modified form
in order to take account of labels.

(I1)
i : α, i : α → β

i + 1 : β
MP

(I2)
i : P1a, . . . , i : Pna, i : (∀x)[(P1x ∧ . . . ∧ Pnx) → Qx]

i + 1 : Qa
EMP.

I.e., all the prerequisites of the Modus Ponens rules must
be present at a time point i in order to assert the conclu-
sion at the time point i + 1.

The next rule, Negative Introspection, allows one to
infer lack of knowledge of a particular formula at time i.
In order to express that we need to define the set Sth(i)
of conclusions that can be drawn at time i. Sth(i) can
be computed by purely syntactical operations and it can
be defined recursively using the inference rules. It is well-
defined for every i ∈ N because the consequence relation
is “directed” by the natural ordering of the set N. Every
inference rule necessarily increments the label. There-
fore all the elements in Sth(i) will be inferred from a fi-
nite number of instances of axiom (A1), namely those for
which labels vary between 0 and i − 1, and from the fi-
nite amount of observations performed until the time i.
As every inference rule increments the label, only a finite
number of applications of every rule is possible before the
label reaches i.

Given a finite set Sth(i) of i-theorems, we can iden-
tify all closed subformulae occurring in them and not oc-
curring as separate theorems (function fcsf ). The pro-
cess of finding all closed subformulae for a given finite
set of formulae (fformulae yields unlabelled formulae) is
computable.

We can now formulate the Negative Introspection rule:

(I3)
α ∈ fcsf (Sth(i)), α /∈ fformulae(Sth(i))

i + 1 : ¬K(i, pαq) Negative
Introspection.

The agent is supposed to be aware of all the closed subfor-
mulae in Sth(i). They provide a relevant and finite subset
of Swff for the self-knowledge mechanism to operate on.

The (I3) rule involves the knowledge predicate K that
takes as one of its arguments a formula. Later rules in this
and next sections will introduce predicates Contra and
Loses which behave similarly. In order to keep the lan-
guage first-order we use the standard reification technique
allowing us to treat formulae (or rather their names) as
terms of the language. In order to make a distinction be-
tween formulae and their names, quoting (shown as pαq,
for an arbitrary formula α) is used.

Finally, we can define two rules that propagate consis-
tent knowledge onwards:

(I4)
i : α, i : ¬α

i + 1 : Contra(i, pαq, p¬αq)
Contradiction

Detection

(I5)

i : α
Contra(i− 1, pαq, pβq) /∈ fformulae(Sth(i))
Contra(i− 1, pβq, pαq) /∈ fformulae(Sth(i))
α 6= Now(i)

i + 1 : α
Inheritance.

We can now define the LDS which is intended to express
the SL7 agent theory:

Bull. Pol. Ac.: Tech. 53(1) 2005 73



M. Asker and J. Malec

Definition 7. LSL7

df
= (N,L,RSL7

), where N denotes
the algebra consisting of the set of natural numbers, with
the successor (+1) as the only operation, L is the first or-
der language and the consequence relation RSL7

is defined
by the inference rules (I1)–(I5)1.

A database ∆ax(OBS ) containing the declarative units in
Saxioms can be generated from the observation function
OBS .

It is now possible to prove that LSL7
works as ex-

pected:

Theorem 2. A formula α can be derived in the
step logic SL7(OBS ,INFB ) at time point i if and only
if it can be derived as i : α in the labeled deductive
system LSL7 defined above. For all observation func-
tions OBS , points in time i, and well-formed formulae
α: SL7(OBS , INFB ) `i α ⇔ ∆ax(OBS ) `LSL7

i : α .

Proof: see [23].

5.4. Elgot-Drapkin’s Memory Model as an LDS.
In our opinion the formalisation of MM as step logic is
an oversimplification. In particular, the STM size limit
is omitted so that the number of formulae in each step
may increase rapidly. This problem has also been rec-
ognized in [7], [24] and [25], which present other formal
active logic systems. However, the major deficiency – the
exponential growth of the number of formulae in each rea-
soning step – has not been satisfactorily solved by any of
those approaches. We address this problem again later,
postulating a solution.

Below we present an LDS-based formulation of the
Memory Model in order to show that LDS has substan-
tially larger expressive power than any of the active logics
studied so far.

The labelling algebra is based on the following struc-
ture:

Slabels
df
= {LTM ,QTM ,STM , ITM }×Swff ×{C,U}×N3

(1)
where the interpretation of a tuple in Slabels is the
following.
If (loc., trigger , cert ., time, pos., time-left-in-rtm) ∈ Slabels

is a label, then loc. encodes the memory bank location of
the formula (one of LTM , QTM , STM or ITM ), trigger is
used for encoding the triggering formula for LTM items
(in particular, ε is used to denote the empty triggering
formula), cert. is used in case of defeasible reasoning to
encode the status of the formula (certain or uncertain),
time is the inference time, pos. denotes the formula’s
position in STM or ITM , and, finally, time-left-in-rtm
denotes the time the labelled formula should remain in
the RTM . R ∈ N is a constant used to limit the time a
formula remains in RTM after it has left STM .

The set of axioms, Saxioms , is determined by the fol-
lowing three schemata:

(A1’) (STM , ε, C, i, i, 0) : Now(i)
for all i ∈ N Clk

(A2’) (QTM , ε, C, i, 0, 0) : α
for all α ∈ OBS (i), i ∈ N Obs

(A3’) (LTM , γ, C, 0, 0, 0) : α
for all rules (γ, α) ∈ LTM LTM.

The first rule describes retrieval from LTM into QTM:

(SR) (STM , ε, c1, i, p, R) : α, (LTM , β, c2, i, 0, 0) : γ, α Rsr β

(QTM , ε, c2, i, 0, 0) : γ
Semantic retrieval.

The relation Rsr describes how the trigger formulae con-
trol the semantic retrieval.

The “real” inference using Modus Ponens is performed
from STM to QTM:

(MP) (STM , ε, c1, i, p1, R) : α, (STM , ε, c2, i, p2, R) : α → β

(QTM , ε,min(c1, c2), i, 0, 0) : β
Modus Ponens

(EMP)

(STM , ε, c1, i, p1, R) : P1a
· · ·
(STM , ε, cn, i, pn, R) : Pna
(STM , ε, cn+1, i, pn+1, R) :

(∀x)[(P1x ∧ . . . ∧ Pnx) → Qx]

(QTM , ε,min(c1, . . . , cn+1), i, 0, 0) : Qa
Extended Modus Ponens

where function min is defined over the set {U,C} of cer-
tainty levels, with the natural ordering U < C. The idea
behind it is that the status of a consequence should not
be stronger than any of its premises.

The next rule, Negative Introspection, allows one to
infer lack of knowledge of a particular formula at time i:

(NI)
α ∈ fcsf (SSTM (i)), α /∈ fformulae(SSTM (i))

(QTM , ε, C, i, 0, 0) : ¬K(i, pαq)
Negative Introspection

where the set Sth(i) described in the previous section
is replaced by its memory-bank-specific counterparts,
SQTM (i), Snew-STM (i), SSTM (i) and SRTM (i). Just like
Sth(i), they are computable by purely syntactic opera-
tions and can be defined recursively on i.

MM in [22] and step logic use different methods to
detect and handle contradictions. Step logic indicates
detected contradictions with the Contra predicate while
MM uses instead certainity levels and the Loses predicate
which is involved in the RTM mechanism. We have al-
lowed both possibilities, where CD1 handles the case of
equal certainties while CD2 and CD2’ deal with the case
of different certainties:

1Actually, with the restriction that rule (I3) can only be used (meaningfully) when all the possible consequences of (I1), (I2), (I4), (I5)
for the time point i have already been drawn. More about this in the next section.

74 Bull. Pol. Ac.: Tech. 53(1) 2005



Reasoning with limited resources: active logics expressed as labelled deductive systems

(CD1)

(STM , ε, C, i, p1, R) : α
(STM , ε, C, i, p2, R) : ¬α

(QTM , ε, C, i, 0, 0) : Contra(i, pαq, p¬αq)

(CD2)

(STM , ε, c1, i, p1, R) : α
(STM , ε, c2, i, p2, R) : ¬α
c1 < c2

(QTM , ε, c1, i, 0, 0) : Loses(pαq)

(CD2’)

(STM , ε, c1, i, p1, R) : ¬α
(STM , ε, c2, i, p2, R) : α
c1 < c2

(QTM , ε, c1, i, 0, 0) : Loses(p¬αq)
.

The next group of rules handles inheritance, i.e., governs
the time a particular formula stays in a memory bank or
is moved to another one. The first inheritance rule says
that everything in LTM stays in LTM forever:

(IL)
(LTM , α, c, i, 0, 0) : β

(LTM , α, c, i + 1, 0, 0) : β
Inheritance in LTM.

The STM is implemented as a FIFO queue of sets of
declarative units, rather than as a FIFO queue of declar-
ative units. This “lazy” implementation avoids selection
among the QTM contents.

One problem with the lazy STM implementation is
that limiting the number of sets in the STM does not nec-
essarily limit the total number of elements in those sets,
which is the number of formulae in the STM . If many
formulae are moved into STM at the same time step, the
sets will contain many elements, the STM will contain
many formulae and there will be more computation per
inference step. The flow from QTM to STM must thus
be controlled to limit the amount of computation to real-
istic levels. And because there is no selection among the
QTM contents, everything that enters QTM also enters
STM , so the flow into QTM must be controlled as well.

Our STM implementation uses the position field in
the labels. The value of the position field should be
zero, unless the associated formula is in STM or ITM .
In that case, it contains the time at which the formula
was moved into STM by the IQS rule shown farther.
The position field then remains unchanged, while the IS
rule propagates the formula forward in time. A function
fmin-STM-pos(i) computes the minimum position value of
all the declarative units in the STM at time i. At time
i, the declarative units in STM can have position values
fmin-STM-pos(i), . . . , i, see Fig. 2 farther.

A simple way to define fmin-STM-pos(i) would be to set
it to max(0, i−S +1), where S is the intended maximum

number of elements in STM . If a position field in a label
is fmin-STM-pos(i) at time i, then the associated formula
can be moved to ITM at time i + 1. The problem with
this simple definition is that formulae will “time out” from
STM into ITM , even when no new formulae are entered
into STM . That is definitely not the FIFO behaviour
described in [22].

Our solution to the “time out” problem is to interpret
S as the maximum number of non-empty sets in STM .
We use a more complex definition of fmin-STM-pos(i) and
do not move anything out from STM to ITM if nothing is
moved in from QTM to STM . The exact fmin-STM-pos(i)
definition, rather cumbersome, is omitted but can be
found in [26].

Useful formulae from QTM are promoted to STM .
Because of the “lazy” STM implementation with sets of
formulae in each position instead of single formulae we
do not have to do much selection here. We just want to
avoid multiple copies of the same formula in STM . We
also make use of the RTM content to avoid rework on
contradictions which have already been resolved:

(IQS)

(QTM , ε, c, i, 0, 0) : α
α /∈ fformulae(SSTM (i))
Loses(pαq) /∈ fformulae(SRTM (i))

(STM , ε, c, i + 1, i + 1, R) : α
Inheritance QTM → STM.

When new formulae are entered into STM from QTM ,
old formulae must be pushed out of STM into ITM , to
get a FIFO behaviour and to limit the STM size to S.
This is done by the (IS) and (ISI) rules which use the
function fmin-STM-pos mentioned above:

(II)
(ITM , ε, c, i, p, r) : α

(ITM , ε, c, i + 1, p, max(0, r − 1)) : α
Inheritance in ITM

(IS)

(STM , ε, c, i, p, R) : α
(p > fmin-STM-pos(i)) ∨ (Snew-STM (i + 1) = ∅)
Contra(i− 1, pαq, pβq) /∈ fformulae(SSTM (i))
Contra(i− 1, pβq, pαq) /∈ fformulae(SSTM (i))
Loses(pαq) /∈ fformulae(SSTM (i))
(α 6= Now(i)) ∧ (α 6= K(i− 1, pβq))

∨(K(i, pβq) /∈ SQTM (i))
(α 6= Contra(i− 1, pβq, pγq))

∨(Contra(i, pβq, pγq) /∈ SQTM (i))
(STM , ε, c, i + 1, p, R) : α

Inheritance in STM

Fig. 2. The structure of the STM and ITM buffer

Bull. Pol. Ac.: Tech. 53(1) 2005 75



M. Asker and J. Malec

(ISI)

(STM , ε, c, i, p, R) : α
(p = fmin-STM-pos(i)) ∧ (Snew-STM (i + 1) 6= ∅)
Contra(i− 1, pαq, pβq) /∈ fformulae(SSTM (i))
Contra(i− 1, pβq, pαq) /∈ fformulae(SSTM (i))
Loses(pαq) /∈ fformulae(SSTM (i))
(α 6= K(i− 1, pβq)) ∨ (K(i, pβq) /∈ SQTM (i))
(α 6= Contra(i− 1, pβq, pγq))

∨(Contra(i, pβq, pγq) /∈ SQTM (i))
(ITM , ε, c, i + 1, p, R) : α

Inheritance STM → ITM.

It should be pointed out that the sets of formulae con-
tained in the STM can grow at most polynomially, avoid-
ing the combinatorial explosion of active logics. On the
other hand, the size of sets in each position of the STM
may still be quite large.

We can now define the LDS encoding the memory
model:

Definition 8. (Memory model LDS) LMM
df
=

(Slabels ,L,RMM ), where the consequence relation RMM

is defined by the rules (SR), (MP), (EMP), (NI), (CD1),
(CD2), (IL), (IQS), (IS), (ISI) and (II).

Slabels should be interpreted as an algebra.
The next step would be to show that the behaviour of

LMM is indeed as expected, namely faithfully implements
the behaviour of MM. Unfortunately, it cannot be done in
a formal way because the original memory model [22] was
introduced only as an informal description of a cognitively
plausible reasoning mechanism. Although this model, ac-
cording to the authors, has been tested in practice, it has
never been completely formalised. The subsequent formal
systems, step logic and a number of active logics based on
it, do not have all the control mechanisms present in the
original MM. Therefore the correspondence could only be
established against our interpretation of the behaviour as
described in the literature. In order to achieve such re-
sult we have interpreted the LMM system using structures
resembling the ones illustrated in Fig. 1.

One problem with LMM is that the functions Sth(i),
SQTM (i), SSTM (i), Snew-STM (i) and SRTM (i) refer to
subsets of Stheorems which only sometimes agree with the
contents of the current database. The sets are certainly
computable, because one can compute them by start-
ing from the axioms and apply the inference rules to
all possible combinations of declarative units for i time
steps.

The sets are contained in the current database if the
proof process is “completed” up to level i. In an implemen-
tation the time proceeds step by step and at each step the
inference rules are applied to every possible combination
of declarative units. So the “complete” sets above auto-
matically become part of the current database. But when
describing the system as an algebraic LDS we cannot be
sure of the “completeness level” of an arbitrary database.
The requirement for completeness requires restrictions on
the order in which inference rules are applied; some of the

rules cannot be applied to some of the declarative units
until the database has reached a certain level of complete-
ness.

One of the strengths of LDS is that it can handle fea-
tures which are normally at the meta-level, at the object
level. It turns out that it can handle this ordering of the
application of inference rules, too. The trick consists of
including the whole database in the labelling of formulae.
The details of such solution are presented in [26].

6. Planning in real-time
Some work on active logics has been devoted to applica-
tion of this approach in real-time planning. In particular,
Nirkhe [24,7] has introduced an active logic for reasoning
with limited resources and provided a modal semantics
for it. However, the computational issues have not been
addressed by this research.

A later formulation in [5] describes an active logic-
based system, called Alma/Carne, designed for planning
and plan execution in real-time. Alma is the reasoning
part of the agent, based on active logic, and capable to
deal with deadlines. Carne is the plan execution module,
procedural in its nature, cooperating with Alma. How-
ever, the computational complexity problem, inherited
from step logic, has not been addressed here either.

Although the idea behind Alma/Carne is appealing —
in some sense it is rather obvious that a decent real-time
cognitive system should have such a structure — the lim-
itations of active logic, consisting of low granularity, lim-
ited to time points, of the reasoning process, are putting
the possibility of practical applications of this approach
into question.

As we have shown above, LMM can offer exactly the
same functionality as active logics, but with much richer
structure of the labels attached to formulae. This way
we can limit the number of formulae staying in focus to a
small, manageable value. We can introduce a labelling in
which not only time points are relevant for predicting the
real-time behaviour of the system, but where the individ-
ual applications of inference rules can be counted, timed
and predicted, if necessary. Therefore a solution similar
to Alma/Carne, but based on LMM (or some other suit-
able LDS) as the reasoning formalism, is envisioned as a
possible breakthrough leading to the hard-real-time pre-
dictability of a reasoning system. The next step would be
to perform the worst-case execution time analysis of the
reasoning process, similarly to the one proposed in [27]
for a different system.

As the first step in this direction we are developing a
prototype implementation of a theorem prover for LDS-
based systems, where the labeling policy and the “classi-
cal part” of an inference rule are handled in a modular
way, allowing one to exchange the label processing pol-
icy while retaining intact those parts of inference rules
(e.g., Modus Ponens or Inheritance) that deal with the
actual formulae. The system will provide a framework for

76 Bull. Pol. Ac.: Tech. 53(1) 2005



Reasoning with limited resources: active logics expressed as labelled deductive systems

experimenting with different LDS-s, analyzing their com-
putational properties, and leading to a formalization that
can survive the requirements of real-time. The prototype
has been so far applied to simple problems, solvable in
principle by hand. But already at this stage we see the
benefit of the prover as a proof verifier. In particular,
we have redone in LMM the proofs from [22], illustrating
the defeasible reasoning patterns. These proofs have been
then verified by the prototype implementation of the au-
tomatic LDS prover, actually finding a couple of errors
unnoticed earlier. As each of the proofs is approximately
100 steps long, we have decided not to include them here.
The interested reader may find them in [26].

7. Conclusions and future work
We have presented an LDS-based formalization for the
memory model entailing later formal active logic systems.
This allows us to expect that even in the case of more com-
plex, time-limited reasoning patterns, LDS will appear
to be a useful and powerful tool. Actually, the technical
problem with restricting the inference rule applications to
a particular order in order to get hold of non-monotonic
dependencies, can be solved satisfactorily by just extend-
ing the labeling algebra and then constraining the infer-
ence rule invocations by appropriately constructed pred-
icates over these labels. LDS provides also far more so-
phisticated basis for defining semantics of such resource-
limited reasoners, in particular, systems that reason in
time and about time.

The technique described in this paper raises a num-
ber of interesting questions that we intend to investigate.
First, what is the actual status of the consequence rela-
tion RMM in the spectrum of algebraic consequence rela-
tions defined in [2]? Can this knowledge be used to better
characterize the logic it captures? Is it possible to charac-
terize the time-limited reasoning in such manner that the
worst-case reasoning time (analogously to the worst-case
execution time, known from the area of real-time systems)
could be effectively computed? What would be then the
semantical characterization of such a logic?

Another challenging problem is to practically realize
a planning system based on this approach. We expect to
be able to implement a LMM -based planner in the near
future, and to experiment with physical robots in the next
stage of the project.

Speaking slightly more generally, we hope that LDS
may serve as a tool for specifying logics that artificial in-
telligence is looking for: formalisms describing the knowl-
edge in flux (to quote the famous title of Peter Gärden-
fors) that serve intelligent agents to reason about the
world they are embedded in and about other agents,
in real-time, without resorting to artificial, extra-logical
mechanisms.

Acknowledgments. The authors are grateful to the
anonymous reviewers for their detailed comments that led
to improvements of this article.

The second author would like to thank Michael Fisher
for pointing out LDS mechanism as a potential tool for
implementing time-limited reasoning.

Sonia Fabre Escusa has made the preliminary imple-
mentation of a theorem prover for the LMM LDS. It al-
lowed us to find a number of inaccuracies in the original
text.

References

[1] B. Selman and H. Kautz, “Knowledge compilation and
theory approximation”, JACM 43(2), 193–224 (1996).

[2] D. Gabbay, Labelled Deductive Systems, Vol. 1, Oxford
University Press, 1996.

[3] J. Elgot-Drapkin, Step Logic: Reasoning Situated in
Time, PhD Thesis, Department of Computer Science,
University of Maryland, 1988.

[4] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, and
D. Perlis, “Active logics: A unified formal approach
to episodic reasoning. Technical report”, Department of
Computer Science, University of Maryland, 1996.

[5] K. Purang, D. Purushothaman, D. Traum, C. Andersen,
D. Traum, and D. Perlis, “Practical reasoning and plan
execution with active logic”. in: Proceedings of the IJ-
CAI’99 Workshop on Practical Reasoning and Rational-
ity, 1999.

[6] J. Elgot-Drapkin, “Step-logic and the three-wise-men
problem”, in: Proc. AAAI, 412–417 (1991).

[7] M. Nirkhe, S. Kraus, and D. Perlis, “Situated reasoning
within tight deadlines and realistic space and computa-
tion bounds”, in: Proc. Common Sense 93, 1993.

[8] H.-D. Ebbinghaus, “Is there a logic for polynomial time?”,
L.J. of the IGPL 7(3), 359–374 (1999).

[9] G. De Giacomo, L. Iochhi, D. Nardi, and R. Rosati, “A
theory and implementation of cognitive mobile robots”,
J. Logic Computation 9(5), 759–785 (1999).

[10] P.F. Patel-Schneider, “A decidable first-order logic for
knowledge representation”, in: Proc. IJCAI 85, 455–458
(1985).

[11] P.F. Patel-Schneider, “A four-valued semantics for frame-
based description languages”, in: Proc. AAAI 86, 344–348
(1986).

[12] M. Cadoli and F. Donini, “A survey on knowledge com-
pilation”, AI Communications, 2001.

[13] M. Cadoli and M. Schaerf, “Approximate reasoning and
non-omniscient agents”, in: Proc. TARK 92, 169–183
(1992).

[14] G. Gogic, C. Papadimitriou, and M. Sideri, “Incremental
recompilation of knowledge”, JAIR 8, 23–37 (1998).

[15] H. Levesque, “A logic of implicit and explicit belief”, in:
Proc. AAAI 84, 198–202, 1984.

[16] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi, Rea-
soning about Knowledge, MIT Press, 2003.

[17] T. Ågotnes, A Logic of Finite Syntactic Epistemic States,
PhD thesis, Department of Informatics, University of
Bergen, Norway, 2004.

[18] W. van der Hoek and M. Wooldridge, “Cooperation,
knowledge and time: Alternating-time temporal epis-
temic logic and its applications”, Studia Logica 75, 125–
157 (2003).

[19] J. Grant, S. Kraus, and D. Perlis, “A logic for character-

Bull. Pol. Ac.: Tech. 53(1) 2005 77



M. Asker and J. Malec

izing multiple bounded agents”, Autonomous Agents and
Multi-Agent Systems 3(4), 455–458 (2000).

[20] D. Gabbay and J. Woods, “The new logic”, L.J. of the
IGPL 9(2), 141–174 (2001).

[21] M. Wooldridge and A. Lomuscio, “A computationally
grounded logic of visibility, perception, and knowledge”,
L. J. of the IGPL 9(2), 257–272 (2001).

[22] J. Drapkin, M. Miller, and D. Perlis, “A memory model
for real-time commonsense reasoning”, Technical Report
TR-86-21, Department of Computer Science, University
of Maryland, 1986.

[23] M. Asker and J. Malec, “Reasoning with limited re-
sources: An LDS-based approach”, B. Tessem et al, eds.
in: Proc. Eight Scandinavian Conference on Artificial In-
telligence 13–24, IOS Press, 2003.

[24] M. Nirkhe, Time-Situated Reasoning Within Tight Dead-
lines and Realistic Space and Computation Bounds, PhD
thesis, Department of Computer Science, University of
Maryland, 1994.

[25] A. Globerman, “A modal active logic with focus of atten-
tion for reasoning in time”, Master’s thesis, Department
of Mathematics and Computer Science, Bar-Illan Univer-
sity, 1997.

[26] M. Asker, “Logical reasoning with temporal con-
straints”, Master’s thesis, Department of Computer
Science, Lund University, August 2003. Available at
http://ai.cs.lth.se/xj/MikaelAsker/exjobb0820.ps.

[27] M. Lin and J. Malec, “Timing analysis of RL programs”,
Control Engineering Practice 6, 403–408 (1998).

78 Bull. Pol. Ac.: Tech. 53(1) 2005


