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A two-step approach to blind deconvolution of speech and
sound sources in the time domain
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Abstract. In order to understand commands given through voice by an operator, user or any human, a robot needs to focus
on a single source, to acquire a clear speech sample and to recognize it. A two-step approach to the deconvolution of speech and
sound mixtures in the time-domain is proposed. At first, we apply a deconvolution procedure, constrained in the sense, that the
de-mixing matrix has fixed diagonal values without non-zero delay parameters. We derive an adaptive rule for the modification
of the de-convolution matrix. Hence, the individual outputs extracted in the first step are eventually still self-convolved. This
corruption we try to eliminate by a de-correlation process independently for every individual output channel.
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1. Introduction

An autonomous service robot requires the use of many
types of sensors [1,2]. Some of these sensors can be mi-
crophones that record sound and speech, originated in
robot’s environment. Especially, in order to understand
commands given through voice by an operator, user or
any human, the robot needs to focus on a single source, to
acquire a clear speech sample and to recognize it. The fo-
cussing and source reconstruction steps can be modelled in
terms of blind signal deconvolution, based on blind signal
processing [3] and independent component analysis [4].

Assuming that several sensors capture mutually con-
voluted signals of several speech and sound sources the
goal of blind processing is to reconstruct the sources (i.e.
their waveforms) without any prior knowledge about the
sources and the convolution process.

Two types of approaches can be distinguished for
such a task: a multi-channel blind source deconvolution
(MBD), performed in the time-domain [5,6], or a multiple
blind source separation (BSS), performed in the frequency
domain (one separation process for every single frequency
bin) [7,8]. In both cases without some constraints, put
onto the sources or the convolutive mixing process, a gen-
eral solution is difficult if not impossible to achieve.

In the past, the authors of this paper considered gen-
eral approaches of both types. These approaches worked
well if some narrow conditions have been satisfied: a gen-
eral deconvolution approach in the time-domain required
a perfect knowledge about the auto-correlation structure
of each source signal [6], whereas the frequency-based ap-
proach required the existence of a dominating frequency
bin component and a prior-knowledge about it [9]. These

assumptions can hardly be satisfied by sound and speech
signals. This fact is already well recognized in the com-
munity, hence approaches are considered that profit from
useful constraints put onto the sources and mixing process
[10,11].

In our paper a two-step approach to the deconvolution
of speech and sound mixtures in the time-domain is pro-
posed. At first, we apply a deconvolution procedure, con-
strained in the sense, that the de-mixing matrix has fixed
diagonal values without non-zero delay parameters. This is
a generalization of the de-correlation approach, presented
by [12]. We derive an adaptive rule for the modification of
the de-convolution matrix. Hence, the individual outputs
extracted in the first step are eventually self-convolved. We
try to eliminate it by a de-correlation process, performed
independently for every individual output channel, like
applied for the task of convoluted noise elimination [13].

We start in the second section with the definition of
the blind source deconvolution (MBD) problem and with
the explanation of our proposed approach – the ECDA
method for MBD and an adaptive rule for single-channel
equalization. In section 3 we describe the derivation of
the update rule for the ECDA method. The consecutive
section contains some experimental results. We conclude
the work by the summary section.

2. The two-step approach to MBD

2.1. The problem. Let us first explain the problem of
source deconvolution on the base of some image sources.
In Figure 1 three convoluted image mixtures of 3 dif-
ferent sources are shown. If we know exactly the auto-
correlation structure of all three sources then a one-step
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Fig. 1. Three convolution mixtures of 3 images

Fig. 2. Three estimated sources from the mixtures in Fig. 1 if
the auto-correlation structures of sources are a priori known

(WWW of source images: www.bip.riken.go.jp)

Fig. 3. A one-step deconvolution is not fully possible if the
auto-correlation structures of sources are not known

de-mixing process provides already high-quality estima-
tions of unknown mixing matrices and unknown sources
(Fig. 2). But it is rather unusual to have this specific
knowledge in practice. Then our results will be like shown
in Fig. 3. The goal of this paper is to split the decon-
volution process into two consecutive steps. In the first
step the between-source mixtures are blindly deconvolved,
whereas in the second step a blind decorrelation of indi-
vidual channels with auto-correlated sources is performed.

2.2. MBD under constant mixing matrix diag-
onal. About the unknown mixing of n unknown
sources {si(k)(i = 1, . . . , n)} we assume that the
sources are statistically independent and their mixtures
{xi(k)(i = 1, . . . , n)} are (discrete- and finite-time) con-
volutions of {si(k)}.

For a single measurement (input) channel with index
i the measured mixture signal is [2]:

xi(k) =
n∑

j=1

L∑

l=0

hij(l)sj(k − l) (1)

where L means the order of the FIR filter (the number
of time delays) and [hij ] means mixing coefficient vectors.
The mixing coefficients for the j-th source in the i -th in-
put channel are given by the (p + 1)-elementary vector:

hT
ij = [hij(0), . . . , hij(p)] .

The deconvolution of input mixtures results in outputs:

yi(k) =
n∑

j=1

q∑

b=0

wij(b)×xj(k − b), i = 1, . . . , n.

To achieve deconvolution the unknown coefficients

wT
ij = [wij(0), . . . , wij(q)] . (2)

must be estimated, for every j -th input and i -th output.
The matrix form of the mixing and demixing equations is
as follows:


x1(k)

...
xn(k)


 =




hT
11 · · · hT

1n
...

. . .
...

hT
n1 · · · hT

nn







s1(k)
...

sn(k)


 (3a)




y1(k)
...

yn(k)


 =




wT
11 · · · wT

1n
...

. . .
...

wT
n1 · · · wT

nn







x1(k)
...

xn(k)


 (3b)

Please note, that all matrix or vector elements on the
right hand side of above equation (3) are itself vectors – in
accordance with considered delay entities. For example:

sT
i (k) = [si(k), . . . , si(k − p)] (4a)

xT
i (k) = [xi(k), . . . , xi(k − q)] (4b)

An equivalent representation in the Z-domain is:

F (z) =
K∑

k=0

f(k)z−k, Xi(z) =
n∑

j=1

Hij(z)Sj(z)

X(z) = H(z)S(z) (5)

where

H(z) =




H11(z) · · · H1n(z)
...

. . .
...

Hn1(z) · · · Hnn(z)


 ,

x(z) =




x1(z)
...

xn(z)


 , s(z) =




s1(z)
...

sn(z)


 . (6)

The deconvolution problem can be simplified by as-
suming a specific mixing matrix. In fact let us fix the
diagonal coefficients of this matrix, following the proposi-
tion in [8]:

H(z) = Ha(z)Hb(z) (7)

Ha(z) =




1 H21(z)
H11(z) · · · H1n(z)

Hnn(z)

H21(z)
H11(z)

. . .
...

...
. . . H(n−1)n(z)

Hnn(z)
Hn1(z)
H11(z) · · · Hn(n−1)(z)

H(n−1)(n−1)(z) 1




,

Hb(z) =




H11(z) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Hnn(z)




(8)
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Hence

X(z) = H(z)S(z) = Ha(z)Hb(z)S(z) = Ha(z)S′(z) (9)

where

S′(z) =




si
′(z)
...

sn
′(z)


 =




H11(z)s1(z)
...

Hnn(z)sn(z)


 . (10)

This assumption means in practice that every source is
recorded in one channel without any delay – only one
source per input exhibits these characteristics. This is a
simplification that can be justified in practice, when every
microphone is located near to a single source only and far
to all other sources.

The demixing process seeks for a separation matrix
representing an FIR filter:

W(z) = P(z)cofH(z) (11a)

under the condition of properly defined mixing, i.e. it
should hold (det(H(z )) 6= 0). cof(H(z )) is related to the
inverse matrix H−1(z ) in such a way that:

cof(H(z)) = det(H(z))H−1(z). (11b)

The matrix P(z ) is a permutation matrix. Hence:

Y(z) = W(x)X(z) = W(z)H(z)S(z)
= P(z)cof(H(z))H(z)S(z)
= P(z)det(H(z))H−1(z)H(z)S(z)
= P(z)det(H(z))S(z) (12)

As the goal of the de-mixing process is to achieve
statistically independent output signals, for every delay
{l ∈ l1, . . . , l2} (e.g. l1 = 0, l2 = L), the following cost
function can be defined:

C =
n∑

i=1

n∑

j=1,j=1

l2∑

l=l1

r2
yiyj

(l) (13)

where the dependence factor for zero-mean signals is:

ryiyj (l) = E {f [yi(k)] g [yj(k + l)]} (14)

and f [y] and g[y] is a suitably defined function-pair such
that: f [y] = y3; g[y] = y (for sub-Gaussian signals) or
f [y] = y; g[y] = tanh(y) (for super-Gaussians).

2.3. The ECDA algorithm for the BSD problem.
By a minimization of the goal function (13) a weight up-
date rule (for matrix W) can be derived (see section 3),
that is a generalization of the CDA rule proposed in [12].

We make a constant diagonal assumption, which pro-
hibits a decay of weights W to zero. The diagonal weight
elements are kept constant, i.e. equal to

wT
ii = [1,0, . . . , 0] for i = 1 . . . n.

In our ECDA method the weight update rule for every

vector wlm (l 6= m) is as follows:

wT
lm = f−1

{
−

( ∑

j 6=l

n∑
c=1

n∑

d=1

AT
jcRxmxcRT

xmxdAjd

)−1

×
( ∑

j 6=l

n∑
c=1

∑

b6=m

n∑

d=1

AT
jcRxmxcRT

xbxdAjdf [wlb]
)}

(15)

A is a matrix function depending on w. A particular ma-
trix Ajc is build around such unknown elements {w jc(q)}
that are used for updating the weight elements with in-
dices l, m and j. R is a matrix function of input signal
cross-dependences. In particular Rxaxc(l) represents a
dependence matrix for pairs of signals with given relative
time delay of l :

rxixj
(l) = E{f [xi(k)]g[xj(k + l)]} (16)

The nonlinear functions f (x) and g(x ) are defined as ex-
plained for equation (2.14). The individual dependences
are aggregated to vectors:

r(l)
xixj

= [rxixj (l − q), · · · , rxixj (l + q)]T (16)

and these vectors are elements of the dependence matrix:

Rxaxc(l) =




r
(l)
xaxc · · · r

(l−q)
xaxc

...
. . .

...
r
(l+q)
xaxc · · · r

(l)
xaxc


 (18)

The ECDA algorithm
(1) Init the weights of W = [wi]
(2) REPEAT

for l=1, . . . ,n
for m=1, . . . ,n
{if l 6= m then modify wlm according to (15)}

UNTIL the weights are not stable

An alternative separation procedure under the con-
stant diagonal mixing assumption is to assure constant
power during the separation process (CPA) [12]. In this
approach, the decay of weights to zero is not possible due
to fixing the independence coefficients for the zero-th de-
lay to some non-zero value K :

Ryiyi[0] = K, (for i = 1 . . . n) (19)

2.4. Adaptive single-channel blind identification.
The term “blind identification” usually means the identi-
fication of a linear system, y = x wT, where the delayed
input samples are formed to a vector x = [x (k), . . . , x(k-
L)]T and the weights corresponding to delayed signals are
w = [w0, . . . , wL]T. Please note, that the output vector
y from the fist step is now again denoted as input x to
the second step.

The Bussgang algorithm [3,15] minimizes the cost
function:

J =
E {[f(y(k))− y(k)]}

2
, (20)
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where f (y) should satisfy the Bussgang property over the
source signals, i.e. that the cross-correlation between
source and its non-linear image has the same shape as
the auto-correlation of the source:

E {s(k)×f(s(k + ∆))}
E {s(k)×f(s(k))} =

E {s(k)×s(k + ∆)}
E {s(k)×s(k)} (21)

The update rule for each weight row has the from:

wj(k + 1) = wj(k) + ηx(k)ej(k), (22)

with

ej(k) = f(yj(k))− yj(k), x(k) = [x(k), . . . , x(k − L)]T

The Godard method [3] minimises the cost function:

J =
E

{
[|y(k)|p −Rp]

2
t
}

2
, where Rp =

E
{|s(k)|2p

}

E {|s(k)|p}
(23)

and p is some positive integer. The update rule is

wj(k + 1) = wj(k) + ηx(k)e∗j (k), (24)

where

e(k) =
∂J

∂y
= |y(k)|p−1sign[y(k)][Rp − |y(k)|p]. (25)

The specific case, when p = 1, is a modification of the Sato
approach, where the original Sato’s cost function was:

j =
E

{
[−y(k) + R1sign(y(k))]2

}

2
. (26)

We apply a specific case of the Godard approach, for
p = 2, which is called the Constant Modulus Algorithm
[3]. The cost function:

J =
E

{ [
y2(k)−R2

]2 }

2
with R2 =

E
{|s(k)|4}

E {|s(k)|2} (27)

leads to the same form of update rule as (23):

wj(k + 1) = wj(k) + ηx(k)e∗j (k),

but with e(k) = y(k)[R2 − |y(k)|2]. (28)

In practice every output signal from the deconvolution
step is divided into time frames, where for every frame
the stationary signal assumption can be approximately
satisfied.

3. Derivation of the ECDA MBD rule
The diagonal elements of the de-mixing matrix are fixed:

wT
ii = [1, 0, . . . , 0], i = 1, . . . , n.

We assume zero-mean sources (if not, they can always be
normalized to zero-mean). The statistical dependence of
two outputs is expressed as:

ryiyj(l) = E {f [yi(t)]g[yj(t− l)]} = 0, ∀ i 6= j, ∀ l.

As specified in (14) we apply the function f (y) = y3

(for sub-Gaussian signals) or f (y) = y (for super-Gaussian
signals). Hence: f [y] = f [w]× f [x].

Similarly, the function g(y) = y or g(y) = tanh(y). For
the second type of the function the decomposition into a
product of two functions is only approximately satisfied:
g[y] ∼= g[w]× g[x].

Assuming above decomposition, the dependence of
outputs y i (i = 1, . . . , n) can be expressed in terms of
weights and inputs for given delay value, i.e. i (index of
1-st output in pair), j (index of 2-nd output in given pair),
l (the relative delay index):

ryiyj(l) ∼=
∼=

[ n∑
a=1

q∑

b=0

f [wia(b)]

× f [xa(k − b)]
n∑

c=1

q∑

d=0

g[wjc(d)] · g[xc(k + l − d)]
]

=
n∑

a=1

q∑

b=0

n∑
c=1

q∑

d=0

f [wia(b)]g[wjc(d)]rxaxc(l + b− d).

(29)

The dependence vectors for the input signals are:

rxixj(l) = E bf [xi(k)]g[xj(k + l)]c
rxixj(l) = [rxixj(l − q), . . . , rxixj(l + q)]T . (30)

For two inputs the dependence factors are summarised by
the following matrix:

Rxaxc(l) =




rxaxc(l) · · · rxaxc(l − q)
...

. . .
...

rxaxc(l + q) · · · rxaxc(l)


 . (31)

Let us denote these weights w ij(q) which are used dur-
ing the calculation of dependence factors for given param-
eters i,j,l :

Ajc =


g[wjc(q)] 0 · · · 0 0
g[wjc(q)] g[wjc(q)] · · · 0 0

...
...

. . .
...

...
g[wjc(1)] g[wjc(2)] · · · g[wjc(q)] 0
g[wjc(0)] g[wjc(1)] · · · g[wjc(q − 1)] g[wjc(q)]

0 g[wjc(0)] · · · g[wjc(q − 2)] g[wjc(q − 1)]
...

...
. . .

...
...

0 0 · · · g[wjc(0)] g[wjc(1)]
0 0 · · · 0 g[wjc(0)]




.

(32)

Thus (29) can be rewritten as:

ryiyj(l) =
n∑

a=1

n∑
c=1

f [wT
ia]AT

jcrxaxc(l). (33)

The dependence factors for given pair of outputs are
aggregated into following vectors (indexed only by i, j):

rT
yiyj = [ryiyj(l1), . . . , ryiyj(l2)] . (34)
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The computation of all dependence coefficients can be ex-
pressed now by the following vector equation:

rT
yiyj =

n∑
a=1

n∑
c=1

f [wT
ia]AT

jcRxaxc. (35)

The criterion for an ideal de-mixing is to achieve zero
values of all dependence coefficients: for all output pairs
(i, j) and all relative delays (from –L to L). In practice we
require to minimize the sum of quadratic formulas over
all pairs (i, j):

C =
∑

i 6=j

rT
yiyjryiyj

C =
( n∑

i=1

n∑

j=1,j 6=i

n∑

a,b,c,d=1

f [wT
ia]AT

jcRxaxc
RT

xbxd
Ajdf [wib]

)
.

(36)

Hence the update rule is derived from the minimization
of C with respect to coefficients wlm:

∂C

∂wlm
=

∂

∂wlm

( ∑

j 6=l

n∑
c=1

n∑

d=1

f [wT
lm]AT

jcRxmxcR
T
xmxdAjdf [wlm]

)

+
∂

∂wlm

( ∑

j 6=l

n∑
c=1

∑

b6=m

n∑

d=1

f [wT
lm]AT

jcRxmxcR
T
xbxdAjdf [wlb]

)

+
∂

∂wlm

( ∑

j 6=l

∑

a 6=m

n∑
c=1

n∑

d=1

f [wT
la]AT

jcRxaxcR
T
xmxdAjdf [wlm]

)

(37)

∂C

∂wlm
=

2
( ∑

j 6=l

n∑
c=1

n∑

d=1

AT
jcRxmxcR

T
xmxdAjd

)
f [wT

lm]
∂f [wT

lm]

∂wlm

+ 2
( ∑

j 6=l

n∑
c=1

∑

b 6=m

n∑

d=1

AT
jcRxmxcR

T
xbxdAjdf [wlb]

)∂f [wT
lm]

∂wlm

(38)

The minimum of gradient (38) is achieved if:
∂C

∂wlm
= 0 (39)

Equations (38) and (39) are rewritten into:

( ∑

j 6=l

n∑
c=1

n∑

d=1

AT
jcRxmxcRT

xmxdAjd

)
f [wT

lm]

= −
( ∑

j 6=l

n∑
c=1

∑

b 6=m

n∑

d=1

AT
jcRxmxcRT

xbxdAjdf [wlb]
)

(40)

and further into:

f [wT
lm] = −

(∑

j 6=l

n∑
c=1

n∑

d=1

AT
jcRxmxcRT

xmxdAjd

)

×
(∑

j 6=l

n∑
c=1

∑

b6=m

n∑

d=1

AT
jcRxmxcRT

xbxdAjdf [wlb]
)
. (41)

4. Experiments
The experiments have been performed in the following
environment (Fig. 4). A multi-channel sound acquisition
card Delta 44 produced by M-Audio [16] was installed in
a PCI interface of a PC with Intel Pentium 2.4 GHz pro-
cessor, with 512 kB cache and FSB bus 533 MHz. Four
dynamic microphones C608 produced by Shure have been
plugged in (working spectrum 50 - 15 kHz) [17].

Fig. 4. The test environment

The acquisition software consisted of n-Track Studio (a
24-bit version 3.3) [18] and a file editor Audacity [19].
The sound source was acquired with 16-bit digital quality
and with sampling frequency of 44 kHz. Later the signal
was re-sampled to a frequency of 12 kHz, in order to lower
the computational requirements.

In Figures 5–7 and 8–10 the mixtures and de-mixing
results for 3 sources or 4 sources (sound, speech, noise),
respectively, are shown. In all tests the first de-mixing
step consisted of our ECDA method and the second one –
of channel equalisation performed by the Godard method.
In all cases the sampling frequency was 12000 Hz and a
16-bit digital sample representation. The number of sam-
ples was 30000 – near 2.5 seconds of signal length.

The separation quality was measured in terms of the
signal-to-noise ratio, i.e. the relative distance between an
estimated source and the original source (after the ampli-
tudes of both the source and output signals were normal-

Fig. 5. Three input signals (mixtures of speech sources
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Fig. 6. Three estimated sources after the first de-mixing step
(the ECDA method

Fig. 7. Three estimated sources after the 2-nd de-mixing (sin-
gle channel equalization

Fig. 8. Four input mixtures for the de-mixing system (natural
signals with an additional convolutive mixing)

ized to the interval 〈−1, 1〉). For the first experiment the
SNR was around 19-22 dB for all sources. In the second
experiment the SNR was around 15-20 dB. The subjective
feeling was quite satisfactory. Obviously, the ordering of
sources cannot be determined without additional assump-
tions and some post-processing. The practical verification
will appear in terms of speech recognition – we require the
recognition procedure to work comparably well both for
the original sources and the reconstructed sources.

Fig. 9. The 4 estimated sources after the ECDA de-mixing
step

Fig. 10. The 4 estimated sources after the 2-nd de-mixing
(single channel equalization)

5. Summary
A two-step approach to many-channel blind deconvo-
lution in time space was proposed and experimentally
tested. The results for synthetic convoluted mixtures of
real sources very well verify this approach. In case of
natural mixtures we face a serious problem of a proper
detection of such time windows in the mixtures in which
all the sources are contributing to the input mixtures (i.e.
they are of non-zero values in these windows). Hence,
the proposed approach should be extended to handle the
deconvolution of sparse signals.
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