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Abstract. In this paper we propose a sensor-based navigation method for navigation of wheeled mobile robot, based on the
Kohonen self-organising map (SOM). We discuss a sensor-based approach to path design and control of wheeled mobile robot
in an unknown 2-D environment with static obstacles. A strategy of reactive navigation is developed including two main
behaviours: a reaching the middle of a collision-free space behaviour, and a goal-seeking behaviour. Each low-level behaviour
has been designed at design stage and then fused to determine a proper actions acting on the environment at running stage.
The combiner can fuse low-level behaviours so that the mobile robot can go for the goal position without colliding with obstacles
one for the convex obstacles and one for the concave ones. The combiner is a softswitch, based on the idea of artificial potential
fields, that chooses more then one action to be active with different degrees at each time step. The output of the navigation
level is fed into a neural tracking controller that takes into account the dynamics of the mobile robot. The purpose of the neural
controller is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously,
while reacting in real-time to unexpected events. Computer simulation has been conducted to illustrate the performance of the
proposed solution by a series of experiments on the emulator of wheeled mobile robot Pioneer-2DX.
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1. Introduction

Expansion of the range of robot tasks motivated by ap-
plications such as office cleaning, cargo delivery and as-
sistance to disabled people, among others an increase in
robot autonomy created a need to generate trajectories
on-line. In order to achieve its task, the mobile robot
must be able to realise a collision-free trajectory among
the obstacles of the environment. Planning a path for a
mobile robot means to find a continuous trajectory that
leads the mobile robot from the initial position to the
goal position. There are a lot of studies on trajectory
generation for robots using various approaches e.g. [1–7].
The two main approaches for solving the path-planning
problem are global and local methods. Model-based sys-
tems address the path finding problem in a global way,
while sensor-based systems consider it in a local way. The
artificial potential field method is a popular tool for on-
line trajectory generation with inherent collision avoid-
ance [1,3,5,6]. A comprehensive overview of the reactive
navigation, robot behaviour and behaviour-based control
field we can find in the book [1,4,6]. Several neural net-
work models e.g. [2–7,10] were proposed to generate real-
time trajectories. Several researchers have already argued
the importance of looking at a mobile robot as a set of el-
ementary behaviours [1,3–5]. Elementary behaviours are
important components of reactive control in which mobile
robot must continuously interact with their environment.
Reactive control means that all decisions are based on

the currently perceived sensory information [1,4,11]. Nu-
merous behaviour co-ordination mechanisms have been
proposed. For a detailed overview, discussion, and com-
parison of behaviour co-ordination mechanisms see [1,6,7].
Behaviour co-ordination mechanisms can be divided into
two main classes: arbitration and command fusion [4].
Command fusion mechanisms provides for a co-ordination
scheme that allows all behaviours to simultaneously con-
tribute to the control of the system in a co-operative man-
ner.

Although many solutions have already been reported
in the literature, the continuing development of new pro-
posals suggests that this field has not settled down yet.

In this paper we propose a sensor-based navigation
method for navigation of wheeled mobile robot, based on
the SOM.

We used a sensor-based system which does not need
a model of the workspace and this is already an advan-
tage in itself. Also, it is computationally inexpensive as it
just reacts to sensor readings. But a sensor-based system
generates sub-optimal paths, and it may get trapped into
dead-ends. Moreover, it is difficult to program a sensor-
based system, as we have to predict every possible situa-
tion the robot will encounter.

We discuss a sensor-based approach to path design
and control of simple individual behaviours of wheeled
mobile robot in an unknown 2-D environment with static
obstacles. A strategy of reactive navigation is developed
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including two main behaviours: a reaching the middle of
a collision-free space behaviour, and a goal-seeking be-
haviour. Each low-level behaviour has been designed at
design stage and then fused by the combiner of behaviours
to determine a proper action acting on the environment
at running stage. The combiner can fuse low-level be-
haviours so that the mobile robot can go for the goal
position without colliding with obstacles one for the con-
vex obstacles and one for the concave ones. The combiner
is a soft switch, based on the idea of artificial potential
fields, that chooses more then one action to be active with
different degrees at each time step. The output of the
navigation level is fed into a neural tracking controller
that takes into account the dynamics of the mobile robot.
The purpose of the neural controller is to generate the
commands for the servo-systems of the robot so it may
choose its way to its goal autonomously, while reacting in
real-time to unexpected events. This research continues
prior researches of the author, concerning collision free
path planning and control of mobile wheeled-robots e.g.
[12–14]. The rest part of the paper is organised as fol-
lows. Dynamic equations of the mobile 2-wheeled-robot
and control properties are included in Section 2. Section 3
displays a SOM neural network. Section 4 includes results
of path finder tests, obtained after numerical simulation.
Section 5 summarizes the results of the research.

2. Modelling and control properties

The mechanical structure of the mobile robot, like
Pioneer-2DX, is shown in Fig. 1.

Fig. 1. The schematic diagram of mobile robot

Presented robot has two degrees of freedom. In the
word co-ordinates a posture is defined as [xA, yA, β]T,
where (xA, yA) is the position of the point A, and β is
the heading angle of the robot with respect to absolute
co-ordinates (x, y). The mobile robot’s kinematics is de-
fined by [15]


ẋA

ẏA
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 =




VAm cos(β) 0
VAm sin(β) 0

0 ωm




[
uv

uβ

]
(1)

with the maximum linear VAm and angular ωm speeds
and uv is the multiplying coefficient applied to the max-

imum linear velocity of point A of the robot and uβ is
the multiplying coefficient applied to the maximum angu-
lar velocity of the frame. That coefficients form a vector
uB = [uv,uβ ]T generated by SOM. Tacking α1, α2 – an-
gles of the self-turn of the propel wheels as independent
co-ordinates, then from velocity vectors of points A, B,
C and (1) we receive velocities expressed in mobile base
co-ordinates

α̇1 =
VA

r1
+ β̇

l1
r1

(2)

α̇2 =
VA

r2
− β̇

l1
r2

(3)

where VA = Vmuv, β̇ = ωmuβ , r1 = r2 = r is radii of the
wheels and l1, l2 are adequate distances which result from
the geometry of the system. Equations (2) and (3) de-
fine a prescribed motion trajectory xd = [α1, α̇1, α2, α̇2]T

which is determined in a higher-level path planner built
on a SOM.

Using Maggi’s formalism [15] the dynamics of wheeled
mobile robot can be written as

[
a1 + a2 + a3 a1 − a2

a1 − a2 a1 + a2 + a3
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+
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]

=
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]
(4)

where a is a vector of the mobile robot parameters, which
results from the system geometry, weights distribution
and motions resistance and is defined by the following
equation:

a1 = (2m1 + m4)
(
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2
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2
2 + IS)
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,
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·
(

rl2
l21

)
,

a5 = N1f1, a6 = N2f2 (5)

and m1 = m2, m4 – substitute mass of wheels 1 and 2 and
the frame, IZ1 = IZ2 – substitute massinertia moments
of the adequate wheels relative to the axes of self-turn
of the wheels. It was assumed that the axes of refer-
ence system connected with part “i” are the main central
axes of inertia, however N1, N2 are pressure forces of the
wheels 1 and 2, f1, f2 are turn friction coefficients of ad-
equate wheels, u = [M1, M2]T is a vector of the moments
propelling driving wheels, l, l1, l2, are adequate distances
which result from the geometry of the system, r1 = r2 = r
are radiuses of adequate wheels.

The objective of mobile robot control is to select the
control vector u = [M1, M2]T so that the mobile robot
follows a prescribed motion trajectory xd(t). The control
objective can be achieved by defining a desired trajectory
xd(t) which is determined in a higher-level path planner
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built on a SOM as depicted in the Fig. 3. Using the Eq. (4)
written in the form

M(q)q̈ + C(q, q̇)q̇ + F (q̇) = u (6)

and define the tracking error e(t) and filtered tracking
error s(t) by [15–17]

e = qd − q, s = ė + Λe (7)

the mobile robot dynamics are expressed in terms of the
filtered error

Mṡ = −Cs + f(x)− u (8)

where unknown non-linear is defined as

f(x) = M(q)(q̈d + Λė) + C(q, q̇)(q̇d + Λe) + F (q̇). (9)

A sort of approximation-based controller is derived by set-
ting

u = f̂ + Ks− v(t) (10)

with f̂ an estimate of f(x), Ks = Ke+KΛe an outer PD
loop and v(t) an auxiliary signal to provide robustness in
the face of disturbances and modelling errors. Suppose
that a neural network (NN) is used to approximate the
non-linear function (9) according to [16]

f(x) = WTS(x) + ε (11)

with W the ideal approximating weights and S(x) is acti-
vation functions. Then an estimate of f(x) is given by

f̂(x) = ŴTS(x) (12)

but the control law (10) becomes

u = ŴS(x) + Ks− v(t). (13)

For a more complete overview of this NN approximation
see [15]. Let the desired trajectory be bounded, recon-
struction error ε is equal to zero and the control signal
for (6) be given by (13) with v(t) = 0 and NN weight
tuning provided by

˙̂
W = ΓS(x)sT (14)

with Γ > ΓT > 0 a constant design matrix. Then the
tracking error s(t) goes to zero with the weight estimated
are bounded [13].

3. Kohonen map

The SOM is an unsupervised learning neural network
method that produces a similarity graph of input data.
The algorithm of this method operates recursively i.e.
upon each presentation of input data vector, it performs a
search for the neuron with minimum distance measure to
input vector. This winning neuron is adapted by learning
rules. In practice, Winner-Takes-Most (WTM) learning
algorithms are applied in which not only the winning neu-
ron but also neurons from its neighborhood update their
weights.

A SOM is a two-layered network [8–11,18] consisting
of an input layer of neurons directly and fully connected

to an output layer. In this paper, the output layer is or-
ganized as a two-dimensional grid and ws is the weight
vector (reference vector) associated to the neuron placed
at position s on grid.

Fig. 2. The Kohonen map

The network is trained by unsupervised learning on a set
of elements {x1, x2, . . . , xn} and for each vector x pre-
sented to the input layer a competition between the neu-
rons takes place. Each neuron calculates the distance

d(x,ws) = ‖x− ws‖2. (15)

The neuron w which weight vector is the closest to x is
the winner of the competition

w = arg min
s

d(x,ws) (16)

and w is awarded the right to learn the input vector, i.e.
to move closer to it in input space:

wn+1
w = wn

w + c(t)h(s, w)(x− wn
w) (17)

Figure 2 illustrates the weight change process of neuron w
in the original input space. In Eq. (17), c(t) is the learn-
ing rate, a real parameter that decreases linearly with the
learning process as

c(t) = c(0)(1− tT−1) (18)

and h(s, w) defines e.g. the Gaussian kernel weight of
‖w − s‖.

The learning step is extended also to the neighbours
of the winner neuron w. The neighbours of neuron w are
those output elements whose distance to w, measured on
the grid , is not greater than a neighbourhood parameter.
At the beginning of the learning process, the neighbour-
hood parameter is large, as time progresses, fewer neurons
are allowed to become closer to the presented input vec-
tor.

If a SOM is trained with perceptions as inputs, then its
reference vectors will represent prototypical perceptions.
The task of the SOM is to construct a set of prototypical
perceptions out of a set of perceptions experienced by the
robot during motion. The neuron which is the winner of
the competition formulates the best prototypical percep-
tions. Thus the control vector uB would be related to the
sensory input vector by the equation

uB = Dww (19)

where D is a matrix of control parameters.
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4. Path finder

Described mobile robot is equipped with eight an ultra-
sonic sensors (few of them are depicted in Fig. 1). The
radius of the sensors si, is Li and sensors are divided into
three group. A group is composed of three, two and
three neighbouring sensors, gives a distance to the ob-
stacle dLi, dFi, dRi, in its field of view dmin ≤ d(·) ≤ dmax,
where and each sensor covers an angular view which are
oriented by angles αLi, αFi, αRi respectively.

To solving the trajectory tracking problem for non-
holonomic mobile robot with considering the vehicle dy-
namics [12–15], it is assumed that the current desired
kinematics is generated at each time step, by SOM naviga-
tor which generates vector of multiplying coefficient uB =
[uv, uβ ]T, based on the environment information, d(·).

In this work, two navigation task is discussed: reach-
ing the middle of a collision-free space behaviour and goal-
seeking behaviour. Each behaviour has been fused in a co-
operative manner based on the idea of artificial potential
fields, to determine a proper actions is the environment
at running stage. Diagram of the navigator and controller
architecture is depicted in Fig. 3.

Fig. 3. Navigator and controller

4.1. Goal seeking behaviour. The task goal seeking
relay on leading mobile robot to desired point G depicted
in Fig. 1. It means minimizing of the distance dG = [A,G]
and the ψG angle which is the angular deviation needed
to reach the goal. In this task the used navigator is built
with a SOM network. This task adopts an egocentric rep-
resentation of the sensory input vector uG = [ψG, dG]T

where ψG ∈ (−π, π][rad] and dG ∈ [0, dG max][m]. The
elements are normalized to the intervals (−1, 1], [0, 1] re-
spectively. At the goal state at time T, uG = [ψG, 0]T

for any ψG. Each neuron i in the SOM has a sensory
weight vector wi = [ψGi,dGi]T that encodes a region in
X centered at wi. Based on each incoming sensory in-
put uG, the SOM constructs a set of prototypical percep-
tions out of a set of perceptions experienced by the robot

during motion. The winning neuron determines the vec-
tor of multiplying coefficient (19). Extensive simulation
tests were done to validate and test the method exposed
above. The workspace is a typical indoor square environ-
ment with dimensions 10× 10[m2]. A SOM of 5× 5 units
arranged in a rectangular lattice was used. The maximum
distance dG max measured between the goal and the sen-
sor was 6 [m]. The control vector uB = uG was generated
by the Eq. (19) with D = I as unity matrix. All initial
weights wS were set randomly. The mobile robot starts
with (xA, xB, β) = (2, 2, 0) in all tests. The parameters
set {Vm, ωm} are equal for all tests {0.4[m/s], 0.3[rad/s]}.
The parameters used in tracking control are presented
in [6].

Figure 4a presents an numerical example of naviga-
tion. Figure 4b prints a set of prototypical perceptions
out of a set of perceptions experienced by the robot during
motion. The action uβ , uv, generated by SOM navigator
for point G3(9,9) are depicted in the Fig. 4c . Real lin-
ear velocity of point A and angular velocity of the frame,
where β̇ = ω and angular velocities of the wheels, where
α̇1 = α1p, α̇2 = α2p are depicted in the Fig. 4d, 4e re-
spectively. For this example driving torque M1 and M2
[Nm] generated by neural controller are presented in the
picture 4f.

Test results show that the mobile robot was able to
navigate to reach the goals and the trajectory of the mo-
bile robot is very smooth. To be more specific the learn-
ing is done on-line. On the beginning of the learning each
neuron to small random value was initialised. Based on
each incoming sensory input uG, the weights are then ad-
justed in real time and mobile robot begins to move and
so on. Based on results received from tests and repeated
realizations of tasks it is concluded that learning process
has no effect on robot motion. No significant deviation
from the previous trajectories is observed.

4.2. Reaching the middle of a collision-free space
behaviour. The objective of this behaviour is to keep
the mobile robot at the middle of a collision-free space.
In order to achieve this task, the mobile robot must be
able to realise a collision-free trajectory among the obsta-
cles of the environment. The obstacle avoidance task uses
the SOM which is self-organised in the same way as the
goal seeking behaviour.

Let the input variables of the SOM navigator are re-
spectively normalised measured distances on the right
dn
R = dR(dR + dL)−1, on the left dn

L = dL(dR + dL)−1

and in the front dn
F = dFη−1, with dL = min(s2, s3),

dF = min(s4, s5), dR = min(s6, s7) as depicted in the
Fig. 1 and η is a distance beyond which the obstacle is not
taken into account. This task adopts the sensory input
vector uS = [dn

F, (dn
L−dn

R)]T. Each neuron in the SOM has
a sensory weight vector wi = [us1i, us2i]T as the neuron in
the goal seeking behaviour. Based on each incoming sen-
sory input uS, the SOM constructs a set of prototypical
perceptions out of a set of perceptions experienced by the
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Fig. 4. Goal seeking behaviour

Fig. 5. Reaching the middle of a collision-free space behaviour
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robot during motion. In this task the winning neuron de-
termines the vector of multiplying coefficient in (19) with
uB = uS. Computer simulation have been conducted to il-
lustrate the performance of the proposed solution. In this
simulations we used the same parameters as in point 4.1.

An example of the resulting navigation reaching the
middle of a collision-free space behaviour and control is
shown in Fig. 5. Figure 5a depicts the trajectory per-
formed by the mobile robot to reach the middle of a
collision-free space of the complex workspace.

Figure 5b prints a final set of prototypical perceptions
out of a set of perceptions experienced by the robot during
motion. The actions uβ , uv, generated by SOM navigator
are depicted on the Figs. 5c. The real linear velocity of
point A and angular velocity of the frame, where β̇ = ω
and angular velocities of the wheels, where α̇1 = α1p,
α̇2 = α2p and are depicted in the Fig. 5d, 5e respectively.
Figure 5f shows the normalised measured distances on the
right dn

R, on the left dn
L and in the front dn

F during the mo-
tion. For this example driving torque M1 and M2 [Nm]
generated by neural controller are presented in Fig. 5g.

Another experiment show that the learning process
has effect on robot motion. For repeated motion with ini-
tial weights wS, as depicted in Fig. 5b, an error of the
behaviour was smaller.

4.3. Fusion of elementary behaviours. In this sec-
tion, the proposed combiner is applied to two behaviours:
obstacle avoidance and goal seeking, to show its perfor-
mance and applicability. When the mobile robot encoun-
ters an obstacle which obstructs the goal, these two be-
haviours are in the conflict. In this paper we adopt the
concept based on the artificial potential fields [1,6] to
solve this conflict. These approaches use a vector sum-
mation i.e. outputs from different behaviours are com-
bined by vector summation. In other words the individ-
ual decision of different behaviours are fused into com-
bined decision. In the proposed navigator low-level mod-
ules are denoted as obstacle avoider (OA) and goal seeker
(GS). Each module receives distances sensed by the ul-
trasonic sensors d(·) and produces output signals. The
GS determines the action uB1 = [uvGS, uβGS]T for the
behaviour of goal seeking, while the OA determines the
action uB2 = [uvOA,uβOA]T for the behaviour of obstacle
avoidance. These two behavioural modules work inde-
pendently and their actions are fused to produce action
uB = [uv,uβ ]T for the navigation. It is assumed that
each low-level module has been well designed. The final
multiplying coefficient applied to the maximum angular
velocity of the frame is generated by equation

uβ = a1uβGS + a2uβOA (20)

where a1 and a2 are coefficients adjusted by experimenta-
tion to get the best trajectory generation. A multiplying
coefficient for the linear speed is given by

uv = min(uvGS + a2uvOA) if dG ≥ R (21)

Fig. 6. Trajectories of point A of mobile robot

It is supposed that no obstacle exists in the circle of
R = 1[m] diameter. The parameters set {a1, a2} are
equal for all tests {1, 1.5}. Based on each incoming set
of prototypical perceptions, as described in earlier points,
the winning neuron for each low-level task determines the
vector of action uB1, uB2. The successive activation of the
different behaviours can be observed in Fig. 6. The mobile
robot received the mission to reach a given goal position
Gi from the given start position with reaching the middle
of a collision-free space. The environment was considered
as fixed and completely unknown.

Fig. 7. Unstable and stable equilibrium

For another example as shown in Fig. 7a, all initial
positions except {(x, y) : x ≤ 6, y = 5} end up in the
goal position. When initial positions belong to this set,
there is a point in which those two behaviours cancel each
other. This is an unstable equilibrium, i.e. any small per-
turbation away from the line will allow the mobile robot
to escape towards the goal. If the obstacle was e.g. ∪-
shaped, shown in Fig. 7b, however the equilibrium would
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be stable and adding small perturbation would accomplish
nothing. In order to get out of those blocking situation
an additional training phase can take place.

The result of the training phase is graphically depicted
in Fig. 8. The robot starts from the same initial positions
and is forced to reach the goal G1. Then this process
is repeated for G2 goal. Received experience of avoid-
ing obstacles, reaching goals G1 and G2 in form of self
organizing net, was enough to solve the task of unstable

equilibrium point. It is shown as trajectory 3, is gener-
ated by the robot. Obtained neurons configurations for
elementary behaviours; reach the goal, reach the middle of
the free space, are presented in Figs. b,c respectively. The
action uB generated by SOM shown in Fig. 8d. Gener-
ated angle velocities should be realized by neural control
system introduced in Fig. 8e. To realize these signals,
moments propelling driving wheels M1, M2 are needed,
shown in Fig. 8f.

Fig. 8. The numerical results for solving unstable equilibrium

Fig. 9. The numerical results for solving stable equilibrium
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Fig. 10. Another numerical results for solving stable equilibrium

Similar SOM learning procedure, is implemented to
solve the task of stable equilibrium point generated by
concave obstacle. Received signals of this experiment are
presented in Fig. 9.

Another test proved that increasing network dimen-
sions to 10×10 neurons, provides the solution of this task
without additional learning procedure. At the beginning
of the learning each neuron, to small random value, was
initialised. Solutions confirm this conclusion as depicted
in Fig. 10.

5. Conclusion

In this work, the decision of using a SOM-like network
seems to be confirmed by its data of topology-conserving
character which is supposed to favour in some way the
learning of suitable perception-action pairs for planning
and behaviour control of wheeled mobile robot in the un-
known environment. In our considerations the learning
machine is the Kohonen Map. We observed that this neu-
ral network model can solve paths planning in complex
unknown environment. A strategy of reactive navigation
was developed including two main behaviours: a reaching
the middle of collision-free space behaviour, and a goal-
seeking behaviour. The paper presents new numerical re-
sults obtained from tasks: an unstable equilibrium, and
a stable equilibrium. In both cases an additional training
phase of SOM can take place and its efficacy was estab-
lished.
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