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Unfalsified control of manipulators: simulation analysis
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Abstract. In this paper we present results of systematic and comprehensive simulation analysis of the Tsao & Safonov unfalsified
controller for complex robot manipulators. In particular, we show that the controller falsification procedure yields the closed-
loop unfalsified controller, which accomplishes the control objective, within a finite and relatively short time interval with the
number of invocations of linear programming based unfalsified controller selection procedure being relatively small. We also
present some conclusions resulting from the investigation of the effect of such elements as manipulator structure complexity,
prior knowledge about disturbances, reference trajectory and assigned closed-loop spectrum on unfalsified controller performance
and computational complexity.
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1. Introduction

In the control of manipulators which parameters and dy-
namics are partially known of the commonly accepted so-
lution are adaptive control algorithms [1–5]. These algo-
rithms were constructed according to the certainty equiv-
alence principle, the adaptive laws had been obtained by
means of Lyapunov design techniques. Although these
results have been known for some time they cannot be
considered as completely satisfactory. Better algorithms
are expected to be obtained by deeper understanding of
the existing paradigms as well as by exploring alternative
approaches to robot control. The second option refers to
such approaches as unfalsified control, [6, 7].

In [7] the authors undertake the issue of taking ad-
vantage of a priori mathematical knowledge about the
plant and disturbances in the unfalsified control strategy,
which is essentially empirical. The considerations refer to
a specific plant which is a horizontal 2R robotic manip-
ulator. In the equation of motion bounded disturbances
were included with the model parameters unknown. The
authors constructed a new robot manipulator controller
by integrating the principles of the unfalsified control de-
sign strategy and model based techniques, which can be
perceived as a robust adaptive computed torque control
algorithm.

The literature reports many robust adaptive control
algorithms for manipulators. Very profound surveys can
be found in [2, 3]. Usually, the design consists of an
adaptive controller that implements a feedforward term,
which compensates the modelled dynamics, and of a slid-
ing mode [8, 9] or an adaptive PD [10] control law that
overcomes the unmodelled dynamics and noise. Some-

times additional and specific restrictions are imposed with
respect to a prior knowledge of unknown parameters and
unmodelled dynamics [8]. In the Tsao & Safonov con-
trol algorithm [7] the compensating feedback linearization
term is present but the effect of unmodelled dynamics is
surmounted by the unconventional “adaptive law”. This
law is based on linear programming methods and signifi-
cantly differs from typical adaptive laws used in manipu-
lators robust controllers.

The Tsao & Safonov controller belongs to the class of
supervisory switching controllers. Currently active feed-
back controller is switched off and replaced whenever its
ability to meet the performance goals is falsified by evolv-
ing experimental data. Thus common in robotics Lya-
punov stability analysis methods cannot be applied here.
Unfortunately the arguments motivating internal stability
of the closed-loop system and accomplishing the control
objective, provided in [7], are not fully formal. On the
other hand, the simulation results presented in [7] reveal
a number of interesting properties of the unfalsified con-
troller. In particular, it can very well cope with bounded
uncertainties. Moreover, the unknown model parameters
are adjusted rapidly and very precisely as compared with
common adaptation methods having continuous adapta-
tion rules.

If these simulation results were valid for more com-
plex manipulators they might be quite attractive for a
robotican. Therefore it seems reasonable to carry out sys-
tematic and comprehensive simulation experiments that
would verify and eventually extend the results from [7].
This thread has been undertaken in this paper. For this
purpose a special simulation package in the Matlab envi-
ronment has been developed with implemented spectrum

∗e-mail: mpawluk@elka.pw.edu.pl
∗∗e-mail: k.arent@pwr.wroc.pl

19



M. Pawluk and K. Arent

of manipulator models, including an industrial one. Nu-
merous experiments have been carried out on a large scale.
Special attention was paid to: controller performance
with respect to uncertainties, the number of switchings
of controllers, distribution in time of the switching mo-
ments, computational complexity, model parameter adap-
tation upon uncertainties, the reference trajectory and the
closed-loop spectrum.

The analysis of the simulation experiments results en-
titles to state that the results obtained for horizontal 2R
robot manipulator are valid for more complex manipu-
lators. However, the higher manipulator complexity, the
lower admissible uncertainties for proper controller perfor-
mance and the higher number of switching of controllers,
the worse and less rapid parameter adjustment.

The paper is organized as follows. Section 2 reviews
the Tsao & Safonov control strategy for manipulators and
points out several open problems, which are undertaken
further on. Section 3 briefly describes the software used in
simulation experiments and provides some basic informa-
tion about the experimental process. Section 4 presents
conclusions obtained on the basis of experiments and il-
lustrates them with selected simulation results. Finally,
Section 5 sums up the paper.

2. Tsao & Safonov unfalsified controller –
simulation problems formulation

We consider a manipulator with rigid links and non-
flexible joints. It follows from the Euler-Lagrange equa-
tions that the dynamics of such manipulators can be de-
scribed by the following equation:

M(q)q̈ + C(q̇, q)q̇ + G(q) + ζ = u. (1)

In (1) M stands for the positive definite manipulator iner-
tia matrix, C represents centrifugal and Coriolis torques,
G is a vector of gravitational torques, q, u denote vectors
of generalized positions and generalized forces. ζ repre-
sents disturbances. It is assumed that |ζi| ≤ ζ̄i, where ζ̄i

denotes the i-th component of ζ and ζ̄i is known.
The Eq. (1) can be rewritten in the linear regression

model form,
Y (q̈, q̇, q)θ∗ + ζ = u. (2)

where θ∗ is a vector of the system parameters and the
regression matrix Y is a known function of measurable
signals q, q̇, q̈.

Within the unfalsified control framework [7] the ma-
nipulator (1) is modeled by a set of trajectories P, where

P , {(r̈, ṙ, r, q̈, q̈, q, u) | M(q)q̈ + C(q̇, q)q̇ + G(q)

+ζ = u, r ∈ C2(R,Rn)}. (3)

The unfalsified control theory is a model free approach
and therefore the equation is secondary in relation to the
set of trajectories.

The unfalsified controller design strategy is based on
the Unfalsified Control Theorem (UCT) [6] which requires
a specification of three sets: K - the set of potential con-
trollers for the plant, Tspec – the set of desired trajectories
of the interconnection plant - controller and Pdata – mea-
surement information.

In the unfalsified control the idea is to interconnect the
manipulator (3) with a controller from the set of candi-
date controllers K and keep this interconnection as long as
this controller is unfalsified (in the meaning of the UCT).
If at the time instant t the interconnected controller is
falsified then another controller from the set of unfalsified
controllers is connected to (3).

The set Pdata is defined as follows.

Pdata ,{(r̈, ṙ, r, q̈, q̇, q, u) | Pτ




q̈
q̇
q


 =




q̈data

q̇data

qdata,


 ,

Pτu = udata, r, q ∈ C2(R,Rn)},
(4)

where Pτ is a truncation operator1.
The sets K and Tspec are not mutually independent

and they have to be constructed simultaneously at the
certain stage of the controller design process. Notice
that K has to contain at least one controller such that
the interconnection of this controller and the manipulator
meets the closed loop system specification characterized
by Tspec.

The manipulator dynamical equation (1) need not, but
it can be utilized to construct K and Tspec. We can go fur-
ther and construct both sets K and Tspec on the basis of
the well established and commonly accepted control law.
The authors of [7] took advantage of the computed torque
control strategy,

u = M(q)(q̈r + 2λ ˙̃q + λ2q̃) + C(q, q̇)q̇ + G(q) (5)

(here λ > 0, qr denotes the reference trajectory and
q̃ = qr − q) and of the closed-loop system (1,5) dynamics
Eqs:

M(q)(¨̃q + 2λ ˙̃q + λ2q̃) = ζ. (6)

K and Tspec have been defined in [7], in the following
way:

K = {K(θ) | θ ∈ Rm}, (7)
K(θ) = {(r, ṙ, r̈, q, q̇, q̈, u) | u = M(q, θ)(r̈ + 2λ(ṙ − q̇)

+ λ2(r − q)) + C(q, q̇, θ)q̇ + G(q, θ)}; (8)
Tspec ={Tspec(θ) | θ ∈ Rm}, (9)

Tspec(θ) = {(r, ṙ, r̈, q, q̇, q̈, u) | |M(q, θ)((r̈− q̈) + 2λ(ṙ − q̇)

+ λ2(r − q))| ≤ ζ̄}; (10)

The set K(θ) in (8) characterizes a candidate controller
for the manipulator P. Tspec(θ) specifies the desired be-
haviour of the interconnection of P and K(θ).

The controller falsification process is permanent, its
mechanism has to be based on UCT. It follows from this

1[Pτ x](t) ,
{

x(t) if 0≤t≤τ

0 otherwise
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theorem that K(θ) is unfalsified by measurement infor-
mation Pdata iff for each (r, ṙ, r̈, q, q̇, q̈, u) ⊂ Pdata ∩ K(θ)
there exists at least one quadruple (q̂, ˙̂q, ¨̂q, û) such that
(r, ṙ, r̈, q̂, ˙̂q, ¨̂q, û) ⊂ Pdata ∩ K(θ) ∩ Tspec(θ).

Direct implementation of UCT is practically impossi-
ble. Therefore alternative methods that would return un-
falsified controllers in the sense of UCT have to be found.
Considering the interconnection of the manipulator P and
the controller K(θ). It is not difficult to show that the
behaviour of this interconnection is characterized by the
following equation:

M(q, θ)(¨̃q + 2λ ˙̃q + λ2q̃) = u− Y (q̈, q̇, q)θ. (11)

The Eq. (11) leads to three important observations.

• Let ũ := u− Y (q̈, q̇, q)θ. If

|ũ| ≤ ζ̄ (12)

on the time interval [0, t] then K(θ) is unfalsified in
the sense of UCT at the time instant t.

• The set K contains at least one controller, K(θ∗),
which is unfalsified on the whole time interval.

• If K(θ) is an unfalsified controller on the whole time
interval and M(q, θ) > δI, δ > 0, then q̃, ˙̃q, ¨̃q ∈ L∞
and the interconnection is internally stable.

In the context of falsification procedure the first ob-
servation is of fundamental significance. With the help
of (12) the set of parameters representing the unfalsified
models on the time interval T, GT, can be constructed as
follows:

GT = {θ | |ui(τ)− Yi(q̈(τ), q̇(τ), q(τ))θ| ≤ ζ̄i,

i = 1, . . . , n, τ ∈ T}. (13)

In (13) ui, Yi, ζ̄i denote the i-th row of u, Y and ζ respec-
tively. Usually T = [0, t]. It follows that K(θ) is unfalsi-
fied at the time instant t by the measurement information
Pdata iff θ ∈ G[0,t].

Thus, if at the time instant t the controller K(θ) in-
terconnected to the manipulator P appears to be falsified
then at the time instant t+ (the time instant just after t)
a new controller K(θ′) has to be interconnected to P, such
that θ′ ∈ G[0,t]. In the light of the second observation this
procedure is well defined because G[0,t] is nonempty for
all t.

It has been recognized in [7] that if the interval T is
discretized then GT is a convex polytope and, moreover,
computation of an element of a convex polytope is a lin-
ear programming problem for which there are many good
computational algorithms. Hence it is proposed in [7] to
update the parameters vector θ according to the follow-
ing rule. If θ(t) ∈ GT then θ(t+) = θ(t). Otherwise θ(t+)
takes value of θc which is the center of the largest ball
that fits inside the convex polytope GT:

θc = arg max
θ∈GT

dist(θ, ∂GT), (14)

where ∂GT denotes the boundary of the set GT. θc can
be computed by solving the following linear programming

problem, [7]:
θc = arg max

θ∈GT
δ (15)

subject to
δ ≥ 0

Yi(q̈(τ), q̇(τ), q(τ))θ + (−ui(τ) + ζ̄i)
−δ‖Yi(q̈(τ), q̇(τ), q(τ))‖ ≥ 0 (16)

−Yi(q̈(τ), q̇(τ), q(τ))θ + (ui(τ) + ζ̄i)
−δ‖Yi(q̈(τ), q̇(τ), q(τ))‖ ≥ 0

∀i and ∀τ ∈ T.
The control law in (8) in conjunction with the con-

troller falsification procedure depicted above constitutes
the Tsao & Safonov ufalsified control strategy.

This strategy can be perceived as a robustified adap-
tive computed torque control algorithm. Careful analysis
of the design procedure of this control algorithm leads to
a number of remarks.

The Tsao & Safonov control strategy does not guar-
antee that the unfalsified controller on the whole time
interval [0,+∞) will be derived within the finite time pe-
riod [0, t∗], t∗ < +∞. Since G[0,t] has to be discretized
in time we can be sure that the manipulator is intercon-
nected with unfalsified controller along a certain sequence
{tk+}+∞k=0, which does not necessarily mean that on the
whole time interval [tk, tk+1] the connected controller is
unfalsified. At this moment we assume that if θ belongs
to the discretized in time set G[0,t] then it also belongs to
the original G[0,t]. Therefore the stability of the closed-
loop system and the quality of the controller performance
cannot be deduced directly from (11).

The computational complexity of the parameters θ up-
date algorithm is proportional to the number of past ex-
periments. The complexity could be reduced by enlarging
the time probing period. However, this might badly af-
fect the internal stability and the controller performance
as there seems to be a conflict between internal stability
and computational complexity.

On the other hand if the closed-loop system can be
initialized such that the unfalsified controller is derived
within a finite time interval then it follows directly from
(11) that the closed-loop system is internally stable and
the control objective is achieved.

To the best knowledge of the authors the formal solu-
tions to the problems depicted above have not been found
yet. However, the results of simulation experiments car-
ried out on the horizontal double pendulum type manip-
ulator, reported in [7], suggest that the number of switch-
ing the falsified controllers off is practically finite. Notice
that this result was obtained for a simple plant. There-
fore the fundamental question is whether it is valid for
manipulators of a more complex structure like EDDA,
IRp-6, Stäubli RX-90 or SCARA. If the answer appears
to be positive the important information will be the total
number of switchings and the time instant of the last con-
troller switching. These parameters will be denoted by κ
and ts respectively.
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Moreover, several other properties that are attractive
for roboticans have been shown in [7]. In particular, the
unfalsified controller can cope with bounded disturbances
quite well. The controller can be obtained rapidly and the
difference between the parameters vector θ representing
the unfalsified controller and the true system parameters
θ∗ can be very small. Recall that in consequence the con-
trol law is very close to the control law that would be ob-
tained if the true manipulator parameters θ∗ were known.
The natural question is how these properties transfer to
the control systems with more complex manipulators.

There are also a few additional specific questions of
secondary importance the answers to which could com-
plement the results from [7].

Suppose that it is possible to derive the closed-loop
unfalsified controller K(θ) within a finite number of steps.
How much θ differs from θ∗? Can we lower the difference
by lowering ζ̄? Will the number of invocations of linear
programming algorithm grow in that case? Notice that
the smaller ζ̄ (i.e., the smaller disturbances), the better
the worst case parameter estimates. Moreover, the better
the parameter adjustment, the more data are necessary
to achieve this, and therefore the value of ts should grow.

Consider Eq. (6). Does the assigned dynamics of
the closed loop system have any effect (regular effect) on
the speed of searching for the unfalsified controller? Is
it possible to provide certain tips for the designer of the
controller, in particular how to choose the parameter λ?
Observe that the larger the λ in (5) then, on the basis
of (6), the faster the convergence of q̃, and the shorter
the time necessary to obtain the sufficiently various set of
constraints in (13), and the quicker the steadier unfalsified
controller is derived.

Finally, does the frequency spectrum of the reference
trajectory affect the convergence of θ ? Observe, that the
more varying the reference trajectory, the more varying
the set of constraints in (13) and the better parameters
adjustment is expected.

3. Simulation experiment organization
Formal solution of the problems posed at the end of the
Section 2 seems to be a nontrivial task. These problems,
however, could be better understood and partially solved
by carrying out systematic and comprehensive simulation
experiments.

To fulfill the postulate of systematic experiments, a
special software package for simulation – Sumnis2 was
written in the Matlab environment. The user interface
of Sumnis is shown in Fig 1.

To ensure comprehensiveness of experiments the user
of Sumnis is offered an access to the graphs of all of the
essential variables in the control system and the possibil-
ity of setting values of all parameters of the particular
components of the investigated dynamical system.

Fig. 1. Sumnis – the user interface

Special attention has been paid to a possibility of af-
fecting the parameters of the controlled plant, the refer-
ence trajectory and the external disturbances. The user
has the four manipulators to choose from: Edda [5], IRp-
6 [13], Stäubli RX-90 [1] and SCARA. If necessary he
can incorporate easily new models of manipulators to the
system. The reference trajectory and the external distur-
bance can be any function that is possible to be defined
in Matlab.

As in [7] actuators for each joint were taken into ac-
count. Denoting by uc

i the output signal of the controller
associated with the i-th joint, by us

i the output signal
of the actuator driving the i-th joint the relationship be-
tween these variables and the i-th input of the manipu-
lator can be expressed as follows: τiu̇

s
i + us

i = uc
i , ui =

us
i − ζi. The user can set any value for τi ≥ 0.
In the experiment five focal areas have been distin-

guished:

• controller performance: no disturbance case;
• controller performance: bounded disturbance case;
• disturbances prior information and computational

complexity;
• closed-loop assigned spectrum and computational

complexity;
• reference trajectory and accuracy of estimates.

The results of the first focal area should show the best
possible controller performance and be a reference point
for the results obtained in the further stage of the exper-
iment. It is assumed that the measure of the controller
performance is a resultant of tracking quality, internal sta-
bility and computational complexity. Evaluation of the
tracking quality can be done using the plots of q̃. Internal
stability can be assumed if the graphs of q do not blow up,
ts is finite and ũ has a regular graph such that |ũ| ≤ ζ̄. To
accept that ts is finite, the simulation stop time has to be
large as compared to ts. The measure of computational
complexity is based on two parameters: ts and κ. The
larger the ts the more constraints in (16). The larger the
κ the more often the controller processor is loaded with a
computationally expensive procedure.

The second focal area is the most important because
the if answers to the key questions of the paper will be

2The source of the package Sumnis is available on request from any of the authors of this article
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provided at this stage. The experimenting process goes
along the same line as in the previous case except that
bounded disturbances are present. Contrary to [7] the
dynamics of actuators were treated marginally, because it
is not possible to derive ζ̄ in this case. The disturbances
were modelled by sinusoidal signals usually. This choice is
a compromise between the experiment complexity and va-
riety of possible signals (see e.g. [3,11–13] ) covered by ζ̄.

The last three focal areas are of technical nature. How-
ever, they might provide a certain insight into the con-
troller. The basis for formulation of conclusions here are
the graphs of θ, θ̃ and the values of the parameter κ.

4. Simulation experiments based results
Using the Sumnis software many simulation experiments3
have been carried out, so that reliable statements to an-
swer questions posed in Section 2 could be formulated.

4.1. Controller performance: no disturbance case.
Consider the case without external disturbances and
structural uncertainty, i.e., ζ ≡ 0. Recall that this
assumption coincides with the necessary conditions for
adaptive feedback linearizing control [5]. The falsification
controllers procedure carries the parameters vector θ from
the initial value to the unfalsified one (i.e., representing
an unfalsified controller) very fast, within a finite time in-
terval. In other words, the number of invocations of the
linear programming procedure (16), κ, is finite, and be-
sides ts is small. θ is a discontinuous function of time.

The steady value of θ usually differs a little from θ∗. The
control objective is achieved. The tracking error does not
converge to zero. However, its value is very small. The
falsifying signal ũ, after a certain time instant, remains
significantly smaller in its absolute value than the distur-
bance prior knowledge parameter ζ̄.

Typical behaviour of the considered control systems
is illustrated by Fig. 2, Fig. 3 and Fig. 4. The basic
experimental settings have been collected in Tab. 1. It
follows from Fig. 4 that parameter estimation is indeed
rapid: ts < 1 s and κ = 5. The parameter adjustment
is very precise. The magnitude of the falsification signal
ũ in Fig. 3 is significantly smaller than the ζ̄ for t > 1.
The graph of ũ entitles us to state that the controller ac-
tive at t = 1 will not be falsified in the future. Figure 2
shows that the signals in the system are bounded and the
tracking error is very small.

Table 1
Stäubli RX-90 – simulation settings. The no disturbance case

manipulator Stäubli RX-90
θ∗ = [ 16.825 0.375 1.65 0.2625 9.825 ...

... 6.15 6.35 3.5 0.25 0.525 ]

q̇(0) = [ 0 0 0 ]T , q(0) = [ 0 0 0 ]T

controller λ = 1

θ(0) = [ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ]T

qd(t) = [ sin(t) cos(t) sin(t) ]T

disturbances ζ ≡ 0, τ = 0, ζ̄ = [ 0.1 0.1 0.1 ]T

Fig. 2. Stäubli RX-90 – tracking errors. The no disturbance case

3The computer simulations were carried out using the software of the Wroclaw Center of Networking and Supercomputing.
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Fig. 3. Stäubli RX-90 – controller falsification. The no disturbance case

Fig. 4. Stäubli RX-90 – the estimates and the estimation errors. The no disturbance case

Fig. 5. EDDA the reference trajectory in the task space.The line styles: dashed and solid correspond to the X, Y coordinates
respectively. The Z coordinate of the reference trajectory is equal to zero

Fig. 6. EDDA – tracking errors. The no disturbance case
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Fig. 7. EDDA – the estimates and the estimation errors. The no disturbance case

Fig. 8. Stäubli RX-90 – positions and tracking errors. The disturbance case

Table 2
EDDA - simulation settings. The no disturbance case

manipulator EDDA
θ∗ = [ 3.1 9.5 0.24 0.77 ]T

q̇(0) = [ 0 0 ]T

controller λ = 40

θ(0) = [ 0.5 0.5 0.5 0.5 ]T

disturbances ζ ≡ 0, τ = 0, ζ̄ = [ 1 1 ]T

Interesting behaviour of the system controlled according
to the unfalsified control strategy can be observed in Fig. 6
and Fig. 7. The simulation experiment settings have been
gathered in Tab. 2. Notice, that the manipulator has the
simplest structure of all the manipulators used in our ex-
periments. The reference trajectory is defined in the task
space and is shown in Fig. 5 (a straight line). It follows
from Fig. 7 that κ = 1 and ts < 0.2 s. The active unfalsi-
fied controller for t > ts is practically the same as K(θ∗)
in spite of the large values of ζ̄. Due to the large value
of λ the tracking errors, presented in Fig. 6, converge
to zero very quickly. This example is not representative
in general, however, it indicates how the unfalsified con-

troller can cope very well with manipulators with a simple
structure.

4.2. Controller performance: bounded distur-
bance case. Consider the model of a manipulator de-
scribed in Section 2, i.e., with bounded external distur-
bances and structural uncertainty. The falsification con-
trollers procedure carries the parameters vector θ from
the initial value to the unfalsified one (ie., representing an
unfalsified controller) very quickly, in a finite time inter-
val. The number of invocations of the linear programming
procedure (16), κ, is finite and relatively small. ts is also
small. θ is a discontinuous function of time. The steady
value of θ can differ from θ∗ significantly. The control ob-
jective is achieved. The tracking error does not converge
to zero. The falsifying signal ũ, after a certain time in-
stant, remains small in its absolute value compared to the
disturbance prior knowledge parameter ζ̄. However, this
signal is larger than in the non-disturbance case.

Typical behaviour of the manipulator controlled ac-
cording to the Tsao & Safonov strategy in the presence of
disturbances is illustrated by Fig. 8, Fig. 9 and Fig. 10.
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Fig. 9. Stäubli RX-90 – controller falsification signals. The disturbance case

Fig. 10. Stäubli RX-90 – the estimates and the estimation
errors. The disturbance case

The experimental settings are the same as in Section 4.1
(see Table 1) except that ζ = [0.05(sin(0.25t) + cos(4t))
0.04(sin(1.25t) + cos(0.8t)) 0.03(sin(t) + cos(t))]T , ζ̄ =
[0.1, 0.1, 0.1]T . It follows from Fig. 10 that as in the
non-disturbance case the parameters adjustment is rapid,
κ = 5, ts < 1. Figure 9 shows that the falsifying signal
ũ is clearly inside the range [−ζ̄, ζ̄] and that there are no
prerequisites suggesting that in the future the active un-
falsified controller at t = 1 will be falsified. The accuracy
of the parameter adjustment is worse than in the non-
disturbance case. Figure 8 shows that tracking is worse
than in the non-disturbance case but it is acceptable.

Table 3
SCARA – simulation settings. The disturbance case

manipulator SCARA
θ∗ = [ 3.26125 0.025 16 36 14.4 5.8 6.2 0.2 ...

... 3.52625 0.11375 23.04 2.778 0.005 ]T

q̇(0) = [ 0 0 0 0 ]T , q(0) = [ 0 0 0 0 ]T

controller λ = 1
θ(0) = [ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...

... 0.5 0.5 0.5 0.5 0.5 ]T

qd(t) = [ sin(t) cos(t) sin(t) cos(t) ]T

disturbances ζ = [ 0.5(sin(0.25t)+cos(4t)) ...

... 0.4(sin(1.25t)+cos(0.8t)) ...

... 0.3(sin(t)+cos(t)) 0.2(sin(0.75t)+cos(1.33t)) ]T ,
τ = 0, ζ̄ = [ 0.5 0.5 0.5 ]T

Figures 11, 12 and 13 show the performance of the
Tsao & Safonov controller when the manipulator struc-
ture is complex. The experimental settings are presented
in Table 3.

Figure 13 shows that parameters adjustment is rapid
but not so fast as in the case of less structurally complex

manipulator Stäubli RX-90. Here κ = 5, ts < 2.5 s. More-
over, comparison of Fig. 13 and Fig. 10 shows that the pa
rameter adjustment is less precise in the case of SCARA.
The graphs in Fig. 12 suggest that no controller falsifica-
tion is expected for t > 2.5. Figure 11 shows positions
q and the tracking errors q̃. These signals are bounded.
Tracking in the first three joints is acceptable while it is

Fig. 11. SCARA – positions and tracking errors. The distur-
bance case
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Fig. 12. SCARA – controller falsification signals. The distur-
bance case

Fig. 13. SCARA – the estimates and the estimation errors.
The disturbance case

not in the last joint. However, the experiments show that
with this level of disturbances tracking can be improved
by enlarging λ. In general the more complex manipula-
tor structure the smaller disturbance is allowed and the
higher prior knowledge about this disturbances ζ̄ is re-
quired to preserve the acceptable level of tracking.

4.3. Disturbances prior information and the com-
putational complexity. In spite of the absence of ex-
ternal disturbances or unmodelled dynamics, the value of
each component of parameter ζ̄ has to be positive. The
effect of this parameters on the unfalsified controller be-
havior can be summarized as follows:

It is possible, by lowering the value of ζ̄,
• to enlarge κ, the number of invocations of the linear

programming procedure (16),
• to lengthen ts, the time of reaching the steady value

by θ
• to decrease the value of the difference between θ∗

and the steady value of θ.
The more complex manipulator the larger the sensi-

tivity to changes of ζ̄.
The above observations are illustrated by Figs. 14, 15,

16 and Table 4.
Table 4

Dependence κ on ζ̄

ζ 0.5 0.1 0.01

3 3 3 EDDA – Figure 14
κ 4 5 6 iRp-6 – Figure 15

5 7 20 SCARA – Figure 16

Fig. 14. EDDA – ζ̄ and parameters estimation errors. The no disturbance case

Fig. 15. IRp-6 – ζ̄ and parameters estimation errors. The no disturbance case
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Fig. 16. SCARA – ζ̄ and parameters estimation errors. The no disturbance case

4.4. Closed-loop assigned spectrum and the com-
putational complexity. Enlarging λ decreases the
time interval in which θ reaches the steady value.The
number of invocations of the linear programming proce-
dure is to a small extent sensitive to the changes of the
value of the parameter λ regardless of the presence of dis-
turbances.

Fig. 17. Stäubli RX-90 – effect of λ on θ

Table 5
Stäubli RX-90 – dependence of θ̃ on λ

Figure 17, subfigure (a) (b) (c) (d)

λ 1 5 1 5
disturbances no no yes yes

κ 2 4 3 4
ts 1 0.25 0.75 0.3

This observation is illustrated by Fig. 17 and Table 5.
The non-zero disturbances are similar to those of Section
(4.2). The only difference is the amplitude which is ten
times larger in this case.

4.5. The reference trajectory and the accuracy of
estimates. Enriching the spectrum of the reference tra-
jectory with harmonics decreases ts, the norm of the dif-
ference of θ∗ and the steady value of θ without significant
effect on the number of invocations of the linear program-
ming algorithm (16) provided ζ̄ is small.

This observation is illustrated by Fig. 18 and Table 6.
The basic simulation settings were following: λ = 1,
ζ ≡ 0, ζ̄ = [ 1 1 1 ]T , τs = 0.

Table 6
Stäubli RX-90 – κ and the reference trajectory

Figure 18,
subfigure qd(t) κ

(a) [ 0 π
4 −π

4 ]T 1

(b) [
∑5

k=1 sin(kt)
∑5

k=1 cos(kt)
∑5

k=1 sin(kt) ]T 7

(c) [
∑10

k=1 sin(kt)
∑10

k=1 cos(kt)
∑10

k=1 sin(kt) ]T 9

Fig. 18. Stäubli RX-90 – effect of the reference trajectory on the parameters θ
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5. Conclusions

In this article we present and analyze the results of simu-
lation studies of robotic systems with controllers designed
according to the principles established by the Tsao and Sa-
fonov in the unfalsified control strategy, [6,7]. Compared
with the similar preliminary investigations reported in [7]
the range of research discussed here is significantly wider.
In particular, more manipulators and with a more com-
plex structure were used during experiments so that the
formulated conclusions are more valuable for a robotican.
The experiments were carried out systematically with the
help of the Sumnis software, especially built for the pur-
poses of the experiments.

It has been concluded, as a result of numerous ex-
periments, that in the approximately real conditions the
controllers falsification algorithm finds an unfalsified con-
troller in a finite number of steps, usually small, in a very
short time. Particularly, the phenomena of chattering has
never been observed. In consequence the control system
is internally stable and the computational complexity of
the controller is relatively low. Moreover, several conclu-
sions referring to the effect of various parameters on the
behavior of the controller were formulated. They enable
the reader to acquire certain intuition about the behavior
of an unfalsified controller.

The obtained results indicate expedience of widest in-
terest in the Tsao & Safonov control strategy, in particular
in the context of practical implementation and theoreti-
cal explanation of all aspects related to computational
complexity and stability. The extra prerequisite motivat-
ing deeper interest in this controller is a very interesting
design strategy, significantly different from the strategies
commonly used in robotics.

Experimental study of the unfalsified control of ma-
nipulators is under way. The results concerning practical
aspects of this strategy will be available in the foreseeable
future.

References

[1] W. Khalil and E. Dombre, Modelling, Identification &
Control of Robots, Hermes Penton Science, 2002.

[2] R. Ortega and M. W. Spong, “Adaptive motion control
of rigid robots”, Automatica 25(6), 877–888 (1989).

[3] H.G. Sage, M.F.D. Mathelin, and E. Ostertag, “Robust
control of robot manipulators: a survey”, International
Journal of Control 72(16) (1999).

[4] M.W. Spong and M. Vidyasagar, Robot Dynamics and
Control, John Wiley & Sons, 1989.

[5] K. Tchon, A. Mazur, I. Dulȩba, R. Hossa, and
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