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Electric circuit analysis by means of optimization criteria
Part I — the simple circuits
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Abstract. One of the main problems of electrical power quality is to ensure a constant power flux from the supply system to the receiver,
keeping in the same time the undisturbed wave form of the current and voltage signals. Distortion of signals are caused by nonlinear or time
varying receivers, voltage changes or power losses in a supply system. The wave-form of the voltage of the source may also be deformed. This
study seeks the optimal current and voltage wave-form by means of an optimization criteria. The optimization problem is defined in Hilbert
space and the special functionals are minimized. The source inner impedance operator is linear and time-varying. Some examples of calculations
are presented.
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1. Introduction

The transmission of electric power from the source to
the load is performed in one loop circuit, and despite its
simplicity there are many unsolved problems related to it.
They result from the fact that in the energy transporting
process there are two signals involved the voltage and
current, and they can produce the same power with
various, sometimes unpredictable, wave forms. Applying
some quality criteria we can find the optimal wave shape
of the voltage and current signals. The power quality
discipline usually deals with this crucial problem. Let us
consider a simple one loop circuit depicted in Fig. 1.

Fig. 1. The power transfer circuit

Such a circuit serves to transport power from the
source e to the receiver. The problem, which seems to
be easy, is to find such a signal i to assure a given
prescribed power P and it can be solved only by means
of optimization technique.

The source power equation

P = (e, i) (1)

obviously leads to an abundance of solutions since there
is an infinite amount of such signals e and i which lead to
the same dot product, equal to active power P . In order
to choose the unique solution from their infinite set, we
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must put one more optimum condition:

||i||2 = (i, i) → min (2)

The task (1)–(2) has only one solution which we get
by minimizing the Lagrange functional

f(i, λ) = (i, i) + λ[P − (e, i)] → min (3)

where λ is real.
Indeed, calculating the variation of the functional (3)

caused by the variation of current δi we get:

f(i+ δi, λ)− f(i, λ)
= 2(i, δi)− (λe, δi) + (2λRi, δi) + (δi, δi)

= (2i− λe, δi) + (δi, δi). (4)

From the previous equation it follows that the suffi-
cient and necessary condition for the minimum (3) exists

2i − λe = 0

or
iλ = 0.5λe. (5)

Now it is necessary to choose one iλ from the abun-
dance of solutions according to the assumption (1) i.e.

P = (e, 0.5λe) = 0.5λ(e, e) = 0.5λ||e||2
thus

λ =
2P

‖e‖2 .

So the optimal current signal meeting condition (1)–(2) is

i =: iopt =
P

||e||2 e. (6)

2. One loop circuit power distribution

In more complex problems the source has a passive linear
inner impedance determined by the Z operator.

In such a circuit the relation between u and i is
determined by

U = e− Zi
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which we can use to calculate the balance of the circuit
power

P = (u, i) = (e, i)− (Zi, i).

If we notice that (Zi, i) = (i, iZ∗), where ‘*’ stands for
conjugating operation, we get

P = (u, i) = (e, i)− (Ri, i) (7)

where

R = 0.5(Z +Z∗) (8)

is a positively defined linear operator.
The power balance consists of three power flux: (e, i)

– the power of the source, ∆PZ = (Ri, i) – the power
losses in the source, P – the developed or absorbed power.
The (Ri, i) is positive for any current signal (is positively
defined) whereas the two others can be both positive or
negative– it is depicted in Fig. 2.

Fig. 2. Power distribution

The Eq. (7) with the unknown current vector also has
infinitely many solutions. But the optimization task

(i, i) → min (9)

(e, i)− (Ri, i) = P

as it is easy to prove, will have the unique solution i.
We can find it by minimizing the functional

f(i,λ) = (i, i) + λ[(Ri, i)− (e, i) + P ] → min (10)

which difference

δf(i, λ) = f(i+ δi, λ)− f(i, λ)
= (2i, δi) + (2λRi, δi)− (λe, δi) + (δi, δi)

+ (λRδi, δi)

= (2(i + λRi)− λe, δi) + (δi+ λRδi, δi) (11)

is positive for all δi. It will be true when the current
signal i meets

2(i+ λRi)− λe = 0

or

(+ λR)i = 0.5λe (12)

where:  denotes an identity operator, 0 — zero signal.

The Eq. (12) includes ( + λR) operator with a λ
parameter. The same operator appears in a quadratic
form forming the second part of the increment (11).

For λ that ( + λR) operator is positively defined,
there exists a solution of (12) and simultaneously it is the
minimum point of (10).

The λ for which the solution of (12) iλ exists also
determines the function

F (λ) = (e, iλ)− (Riλ, iλ (13)

But there are also such values of λ for which F (λ)
is undefined. To find them we must use the operator
spectrum of R.

The operator spectrum of R is the set of λ such that
the (+λR) operator is non-reversible. It means that the
equation

(λ − R)x = 0

has a non-zero solution. Hence multiplying this equation
by the scalar x we get:

λ||x||2 = (Rx,x) (14)

then the operator R spectrum consists uniquely of the
positive real numbers, because the R is a self-adjoint,
positively defined operator. It results from (14) that the
spectrum is a non-empty closed and bounded set because
the R is bounded.

In order to study F (λ) function we must calculate the
derivative of iλ signal (the i′

λ exists in the determinate set
of F (λ)), by differentiate equation (12) in the λ direction

(+ λR)i′
λ = 0.5(e − 2Riλ) (15)

From (13) follows the derivative formula for F (λ):

F ′(λ) = (e, i′
λ)− (2Riλ, i

′
λ) = (e − 2Riλ, i

′
λ)

= 2((+ λR)i′
λ, i

′
λ)

the resulting quadratic form is positively or negatively
definite, only when ( + λR) is positively or negatively
definite i.e. when the functional (10) has maximum or
minimum value. It follows that the F (λ) function has two
branches: ascending and decreasing.

For the prescribed power P < Pmax drawn from the
source the equation

F (λ) = P (16)

has two solutions of λ multipliers for which the functional
(10) has respectively: a minimum – for λ from the ascend-
ing branch of F (λ) and maximum from decreasing one.
The function F (λ) with the power fluxes for appropriate
λ ranges is depicted in Fig. 3. It entails the existence of
two extreme source currents: imin and imax, which min-
imize or maximize respectively the functional (2). From
the practical point of view more important is the imin

current.
The F (λ) function shows the relation between the

delivered power of the source and the λ coefficient and it
can be called a power characteristics of the source.
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Fig. 3. The power characteristics of the source Monotonic branch

a) ascending, b) decreasing, c) singular

The more detailed examination of the F (λ) function
shows that for λ = 0 → (iλ = 0), F (0) = 0, oraz (i′

λ =
0.5e), F ′(0) = 0.5||e||2 the function is zero and has
a positive derivation.

Whereas for λ± ∞ → (iλ = 0.5R−1e),

F (λ) = 0.25(R−1e, e) = Pmax

which also results from the limits of the functional (10)

f(i, λ→ ∞) [(Ri, i)− (e, i) + P ] → min

or

−f(i, λ→ ∞) − [(Ri, i)− (e, i) + P ] → max

and using the variation method we get

Ri = 0.5e.

It is equivalent to the solution of the so called receiver
matching problem according to the maximum power given
and it is discussed in the literature for various particular
current spaces and impedance operators of the source. For
the lossless source with the zero loss operator R : R = 0,
Eq. (12) gives

iλ = 0.5λe

and

F (λ) = 0.5||e||2λ
which means that the power characteristics of the source
is linear and unlimited. The lossy source has always the
power characteristics limited by the maximum power Pmax.

Example 1. Let us find the power characteristic of the
source with the time varying inner impedance (Fig. 4).

Fig. 4. The equivalent circuit diagram of the source with the time

varying resistor-inductance inner impedance

In this case

Z =
[
r(t) + l(t)

d

dt

]

and it affects a current signal according to the formula

Zi(t) =
[
r(t)i(t) + l(t)

di

dt

]
.

In order to define the conjugated operator Z∗ we calculate
the quadratic form

(Zi, i) =
∞∫

−∞
r(t)[i(t)]2dt+∞−∞∞l(t)

di

dt
i(t)dt.

After applying the Liouville’s transformation in inte-
gration by parts of the second component we get

(Zi, i) =
∞∫

−∞
r(t)[i(t)]2dt−

∞∫
−∞

d[l(t)i(t)]
dt

i(t)dt = (Z∗i, i)

of which results the conjugated operator of the form

Z∗ =
[
r(t) − l(t) d

dt
− dl(t)

dt

]
.

Therefore the loss operator has the form

R = 0.5(Z +Z∗) =
[
r(t) − 0.5

dl(t)
dt

]
. (17)

The operator equation to calculate the optimal current
signal (12) has now the algebraic form(

1 + λ
[
r(t) − 0.5

dl(t)
dt

])
i(t) = 0.5λe(t).

Thus the power characteristics of the source F (λ) is

F (λ) =
λ

2

∞∫
−∞

1 + 0.5ρ(t)
[1 + λρ(t)]2

[e(t)]2dt

where ρ(t) = r(t) − 0.5 dL(t)
dt .

Analyzing the foregoing denominator of the integral
we find the singularities for λ < 0 when for the positively
defined two terminal networks is

r(t) − 0.5
dL(t)
dt

> 0

for any t.

Example 2. In the case of a stationary circuit the
operator (8) is defined with the single variable function
of s

R(s) = 0.5(Z(s) +Z(−s))
where Z(s) is an ordinary operator function of the source
inner impedance, and Z(−s) is its conjugated operator.
It follows from the Liouville’s transformation of a single
difference operator

∞∫
−∞

(sx)(t)y(t)dt =
∞∫

∞
x(t)[(−1)sy]dt.

Thus for the conjugated operator the following formula is
in force

s∗ = s−1.

The operator Eq . (12) has then the following form

[+ λR(s)]I(s) = 0.5λE(s) (18)
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where I(s), E(s) stand for the two-sided Laplace trans-
formation of the source current and voltage.

Equation (18) instantly gives the solution

Iλ(s) =
0.5λE(s)
1 + λR(s)

.

The power characteristics of the source (13) is defined by
the Parsevall’s formula:

F (λ) = (e, iλ)− (Riλ, iλ)

=
1
2πj

j∞∫
−j∞

E(jω)Iλ(−jω)d(jω)

− 1
2πj

j∞∫
−j∞

R(jω)Iλ(jω)Iλ(−jω)d(jω)

=
1
2πj

∫
Re(s)=0

E(s)Iλ(−s)ds

− 1
2πj

∫
Re(s)=0

R(s)Iλ(s)Iλ(−s)ds

=
1
2πj

∫
Re(s)=0

(
2

1 + λR(s)
− λR(s)
[1 + λR(s)]2

)
E(s)E(−s)ds

=
1
8πj

∫
Re(s)=0

(
2 + λR(s)
[1 + λR(s)]2

)
E(s)E(−s)ds.

From the Jordan lemma the integrals along the imaginary
axis are substituted by the integrals along the contour
including the right or left half plain i.e. the contour
consists of an imaginary axis and an appropriate semi
circle with the (0,0) center point and a radius approaching
to infinity. These contours are marked as ⊂ and ⊃. Thus

F (λ) =
1
8πj

∫
⊂∨⊃

(
2 + λR(s)
[1 + λR(s)]2

)
E(s)E(−s)ds. (19)

The formula (19) is suitable for a rational function in
integral, when we can use the Cauchy integral formula.

The derivative of F ′(λ) has the form

F ′(λ) =
1
4πj

∫
⊂∨⊃

(
E(s)E(−s)
[1 + λR(s)]3

)
ds.

The root λ∗ of the Eq. (16) for the prescribed power
P ∈ (−∞, Pmax) is on the ascending branch of F (λ) and
determines a particular case of the current signal i.e. the
optimal current. The root can be found both graphically
or analytically using the Newton’s method.

λk+1 = λk +
P − F (λk)
F ′(λk)

= Γ (λk). (20)

This procedure is always convergent for λ > 0

Fig. 5. Γ (λ) function subsequent and consecutive iteration points

It results from the shape of the Γ (λ) function – its
graph and consecutive iteration points are shown in Fig. 5
[1, 2].

3. Power analysis of the circuit by means of
other evaluation functionals

In order to calculate the optimal source current other
practical functionals, besides (9), can be used. Introduc-
ing the prescribed reference signal i0 we minimize the
functional of the current deviation

∆i = i − i0.

We can create optimization task in the form

(∆i,∆i) → min

(e, i)− (Ri, i) = P (21)

The task (21) has a similar solution to the task (9) –
considered in the preceding chapter. By analogy we can
prove that the minimum condition of (21) result from
equation

(+ λR)i = 0.5λe+ i0. (22)

The power characteristics of the source (13) is similar to
the previous one from the Section 2.

From the practical point of view it is important to
minimize the voltage deviation on the source terminals
referred to the prescribed signal u0:

∆u = u0 − u.

It leads to the following minimizing problem:

(∆u,∆u) → min

(e, i)− (Ri, i) = P. (23)

If we note that

∆u = Zi −∆e

where: ∆e = e − u0, Z – the inner source impedance
operator, we can form the Lagrange functional depended
on the current

fλ(i) = (∆u,∆u) + λ[(Ri, i)− (e, i) + P ] → min (24)

and its deviation (noting that δ(∆u) = Zδi) gives

δfλ(i) = fλ(i + δi)− fλ(i)

= (2Z∗∆u+ 2λRi − λe, δi)

+ ((Z∗Z + λR)δi, δi) . . . (25)
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From (25) results the sufficient and necessary condition
for the minimum (24) to exist.

Z∗∆u+ λRi = 0.5λe

or
(Z∗Z + λR)i = 0.5λe+Z∗∆e. (26)

The operator Eq. (26) gives the optimal current for
the (24) criterion

iλ = (Z∗Z + λR)−1(0.5λe+Z∗∆e). (27)

The characteristics F (λ) is defined in λ points for
which the solution of (26) exists i.e. when the invert
operator (Z∗Z + λR)−1 exists.

The function F (λ) has a derivative

F ′(λ) = (e − 2Riλ, i
′
λ)

where i′
λ is the current derivative in λ and is calculated

by differencing the Eq. (26)

(Z∗Z + λR)i′
λ = 0.5(e − 2Ri′

λ). (28)

From (27), (28) it results that F ′(λ) is a quadratic form

F ′(λ) = (2(Z∗Z + λR)i′
λ, i

′
λ) (29)

with (Z∗Z + λR) operator, which also appear in (25).
The positive definition of this operator means the mono-
tonically ascending branch of F (λ) and the existence of
the minimum of the functional (24) there. Whereas the
negative definition of this operator means the monotoni-
cally decreasing branch of F (λ) and the existence of the
minimum of the functional (24) there.

The F (λ) function has the following quality for λ = 0

(Z∗Z)−1Z∗∆e = Z−1∆e = Y e

F (0) = (e,Y ∆e)− (Y ∗RY ∆e,∆e)

λ→ ∞
F (λ) → 0.25(R−1e, e) = Pmax

The graph 6 shows F (λ) function

Fig. 6. The power characteristic of a source

The calculated optimal current signal (27) for (23)
condition can be written in a form

iopt = Gopte+ j0 (30)

where: Gopt = 0.5λe(Z∗Z + λR)−1,

j0 = (Z∗Z + λR)−1Z∗∆e.

Gopt – self-adjoint, positively defined linear operator, j0

– additional current signal.

This result is depicted in Fig. 7.

Fig. 7. The equivalent circuit diagram of the optimal current

It is worth considering the particular optimal solutions
when the source is lossless i.e. whenR is the zero operator.
In that case the Eq. (26) is reduced to

Z∗Zi = 0.5λe+Z∗∆e (31)

and can be solved directly

iλ = 0.5λY Y ∗e+ Y ∆e (32)

where Y = Z−1 is the inner admittance of the source.
The power characteristics

F (λ) = 0.5λ(Y Y ∗e, e) + (Y ∗∆e, e) (33)

is then an affine function.
The solution of (16) is a point

λ∗ = 2
P −∆P
(Y Y ∗e, e)

(34)

where

∆P = (Y ∆e, e).

So the optimal current of a lossless but flexible source,
giving the closest voltage to u0, is given by the formula:

iopt =
P −∆P
(Y Y ∗e, e)

Y Y ∗e+ Y ∆e. (35)

These results even get reduced for u0 = e, when ∆e = 0
and the formulas (29)–(34) take the form

iλ = 0.5λY Y ∗e

The F (λ) function is linear

F (λ) = 0.5λ(Y Y ∗e, e). (36)

Thus the optimal source current giving the minimal
voltage drop on terminals is

iopt =
P

(Y Y ∗e, e)
Y Y ∗e. (37)

It is worth comparing the foregoing current form to the
result (6), for the current norm criterion

||i||2 → min : iopt =
P

(e, e)
e

which exists in the literature as a Fryze current [1, 2, 3–8,
9] and it is a particular case of the current (37), which is
easy to see after substituting

Y Y ∗e = e′.

Therefore the optimal current assuring the minimal inner
RMS voltage drop((∆u,∆u) → min) is given by

iopt =
P

(e′, e)
e′. (38)

Bull. Pol. Ac.: Tech. 52(4) 2004 363



M. Siwczyński, M. Jaraczewski

Example 3. It is easy to show a definite example of
the result (37). Let’s take the two terminal network with
a time invariant and reactive elements. Its impedance
function is then an odd function

Z(s) := sX(s2) (39)

where X(s2) – even rational function. Thus the loss
function is

R(s) = 0.5(Z(s) +Z(−s))
= 0.5[sX(s2) + (−s)X((s2))] = 0.

The (39) operator has the inversion (admittance)

Y (s) =
1

sX(s2)

then

Y (s)Y ∗(s) = Y (s)Y (−s) = −1
s2[X(s2)]2

(Y Y ∗e, e) = − 1
2πj

j∞∫
−j∞

E(s)E(−s)
s2[X(s2)]2

ds

=
1
2π

∞∫
−∞

|E(jω)|2
ω2[X(−ω2)]2

dω. (40)

Applying (39) and (40) in (37) we get the two sided
Laplace transformation of the optimal current

Iopt(s) =
−P

1
2π

∞∫
−∞

|E(jω)|2
ω2[X(−ω2)]2

dω

· E(s)
s2[X(s2)]2

. (41)

Given result (41) can be reduced e.g. for the almost
periodic signals. In that case the function F (s) has the
values

Z(jω) = jωX(−ω2)

where ω ∈ {ωn : n = 0, 1, 2, ...} is a countable set of
harmonic components making signal e(t):

e(t) = real

[ ∞∑
n=0

√
2Ene

jωnt

]
=

∞∑
n=−∞

En√
2
ejωnt (42)

where:

E−n = E∗
n, ω−n = −ωn. (43)

Defining the inner product of the almost periodic signals

(u, i) = lim
T →∞

1
T

T∫
0

u(t)i(t)dt (44)

and using (42) in (44) we get a particular form of the
Parsevall formula:

(u, i) =
∞∑∑

n,m=−∞

1
2
UnIm lim

T →∞
1
T

T∫
0

ej(ωn+ωm)tdt

=
1
2

∞∑
n=−∞

UnI
∗
n = real

∞∑
n=0

UnI
∗
n = real

∞∑
n=0

U∗
nIn

where I−n = I∗
n because

lim
T →∞

1
T

T∫
0

ej(ωn+ωm)tdt =
{
1 dla n+m = 0
0 dla n+m �= 0 .

In such a case the quadratic form (40) gives

(Y Y ∗e, e) =
∞∑

n=0

|En|2
ω2

nX
2
n

where: Xn = X(−ω2
n) whereas the spectrum of the almost

periodic current signal – a counterpart of the current (41)
– is given by

Iopt
n =

P∑∞
m=0

|Em|2

ω2
mX2

m

En

ω2
nX

2
n

. (46)

Note that the forms (45) and (46) remain valid for
periodic signals.

4. Power analysis of the circuit by means of
multi criterion optimization tasks

In the previous chapter we have formulated some prac-
tical quality criterions concerning power transmission in
a one loop circuit. In order to satisfy many individual re-
ceivers at the same time, we need to form some mixed
optimization criterions to give reasonable compromises.
They can be e.g. the two criterion optimization tasks like:

(i, i) → min

(e, i)− (Ri, i) = P (47)

(∆i,∆i) = Q

or

(i, i) → min

(e, i)− (Ri, i) = P (48)

(∆u,∆u) = Q

where: ∆i = i − i0, ∆u = u − u0 – current and voltage
deviations, i0, u0 – prescribed signals of the current and
voltage.

In the condition (47) Q is the acceptable distortion
measure of i regarding i0 or acceptable distortion measure
of u regarding u0 (48). It is obvious that these are not
the unique practical optimization conditions of the source
signals. As further examples we can formulate

(∆i,∆i) → min

(e, i)− (Ri, i) = P (49)

(∆i,∆i) = Q

or

(∆i,∆i) → min

(e, i)− (Ri, i) = P (50)

(∆u,∆u) = Q

These tasks are formulated correctly and all of theme
have a unique solution [60]. The task (47) is equivalent to
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minimize the Lagrange’s functional

fλ,µ(i) = (i, i) + λ[(Ri, i)− (e, i)]

+ µ(∆i, ∆i) → min (51)

which difference in the minimum point is

fλ,µ(i) = fλ,µ(i+ δi)− fλ,µ(i)

= (2i+ λRi + 2µ∆i − λe, δi)

+ ((1 + µ1 + λR)δi, δi) > 0 (52)

for any variation of the current signal δi. Thus we get the
necessary minimum condition

(1 + µ1 + λR)i = 0.5λe+ µi0. (53)

For the positively defined operator

Aλ,µ =: 1 + µ1 + λR (54)

the equation has the solution iλ,µ. Then the vector func-
tion is defined

F (λ, µ) =
[
Fλ(λ,µ)
Fµ(λ, µ)

]

=
[
(e, iλ,µ)− (Riλ,µ, iλ,µ)
(iλ,µ − i0, iλ,µ − i0)

]
. (55)

The first component of the foregoing function is the source
active power and the second is the deviation norm of the
current. This function can be called a power-distortion
characteristics.

The search of λ∗ and µ∗ which determine the optimal
current

iopt := iλ∗,µ∗ = A
−1
λ∗,µ∗(0.5λ∗e+ µ∗i0) (56)

is performed using the following set of equations

F (λ, µ) =
[
P
Q

]
. (57)

It is the counterpart of the power Eq. (16), which ap-
pear in the one criterion optimization task. It is proved [2]
that there exist such P and Q that above equation has
the unique solution.

Example 4. The optimization equation which solves
the problem (47) has form (53) but for lossless source it
get reduced to

(1 + µ)i = 0.5λe+ µi0 (58)

and it can be solved directly

i = 0.5
λ

1 + µ
e− 1

1 + µ
i0 + i0 (59)

therefore

∆i =
0.5λ
1 + µ

e− 1
1 + µ

i0. (60)

The component functions in (55) gives the form

Fλ(λ, µ) = 0.5
‖e‖2

1 + µ
λ− 1

1 + µ
(e, i0) + (e, i0)

Fµ(λ, µ) = 0.25
‖e‖2λ2 − 4λ(e, i0) + 4‖i0‖2

(1 + µ)2
. (61)

It turns out that for the lossless source the set of
Eq. (57) can be unequivocally solved to λ and µ. It takes
the following form

0.5||e||2λ− (e, i0) = (1 + µ)(e,∆i)

||e||2λ2 − 4(e, i0)λ+ 4||i0||2 = 4||∆i||2(1 + µ)2. (62)
The solution of Eq. (62) is [2]

λ =
2

‖e‖2

[
(e, i0)± (e,∆i)

K0

K

]

µ = ±K0

K
− 1 (63)

where K0 and K meet the Schwarz inequality

K2 = ||e||2||∆i||2 − (e,∆i)2 > 0 (64)

K2
0 = ||e||2||i0||2 − (e, i0)2 > 0. (65)

These coefficients have a characteristic form. They stand
for the residual nonnative powers in the geometric dif-
ferences between the active and apparent powers. They
can be associated with the reactive powers of the source
signals ∆i and i0 respectively.

The minimum point demands that

(1 + µ) > 0

and it assures a positive definition of the operator (54).
Then the solution (63) of (62) is unequivocal

λ∗ =
2

‖e‖2

[
(e, i0) + (e,∆i)

K0

K

]

µ∗ = +
K0

K
− 1 (66)

The optimal current is given by

iopt =
1

1 + µ∗
(0.5λ∗e− i0) + i0

=
K

K0
0.5λ∗e +

(
1− K

K0

)
i0

=
[(
K

K0
− 1
)
(e, i0) + P

]
e

‖e‖2 +
(
1− K

K0

)
i0.

Finally it will be convenient to rearrange it to the form

iopt =
[
P −

(
1− K

K0

)
P0

]
e

‖e‖2 +
(
1− K

K0

)
i0 (67)

where:
P0 = (e, i0) – power of the ideal source giving the

reference signal i0;
K0 =

√
‖e‖2‖i0‖2 − P 2

0 – remaining (reactive) power
of the ideal source;

K =
√
β2‖e‖2‖i0‖2 − (P − P0)2 (68)

β2 = Q
‖i0‖2 = ‖i−i0‖2

‖i0‖2 – relative coefficient of the
distorted current. (69)

From the (68) results a certain existence condition of
the minimization solution

β2||e||2||i0||2 − (P − P0)2 � 0
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or

β � |P − P0|
‖e‖‖i0‖ (70)

From (69) and (70) results one more form of the condition

Q � (P − P0)2

‖e‖2 . (71)

Inequality (71) can be treated as an existence con-
dition of the solution for the lossless source with the
arbitrary assumed signals e, i and scalars P , Q. The
assumed relative distortion value cannot be too small.

The signal (67) is then the minimal RMS current with
a prescribed distortion level, giving the prescribed source
power P .

This result can be treated as one more generalization
of the so called Fryze current (6) with an additional
condition defining the signal distortion level.

Example 5. We will consider the minimal RMS current
problem of the source with the prescribed voltage distor-
tion (48). The appropriate solution of the optimization
equation has the form

(1 + µZ∗Z + λR)iλ = 0.5λe+ µZ∗∆e (72)

where ∆e = e − u0, u0 – prescribed voltage signals.
In a particular case of the lossless source and for

u0 = e (the prescribed voltage equals to the open state
voltage) we get the problem of finding the minimal RMS
current having the prescribed RMS voltage drop in the
source. Thus the Eq. (72) reduces to

(1 + µZ∗Z)i = 0.5λe. (73)

This problem is a little more complex then in the Exam-
ple 4. In the foregoing equation there is µZ∗Z operator
instead of the µ scalar.

The Eq. (73) has the solution

iλµ = 0.5λ(1 + µZ∗Z)−1e = 0.5λK(µ)e

where

K(µ) = (1 + µZ∗Z)−1 (74)

is a linear self-adjoint operator, positively defined for
µ > 0. For µ = 0 is

K(0) = 1 (identityoperator)

thus:

Fλ(λ, µ) = 0.5λ(K(µ)e, e)

Fµ(λ, µ) = (0.5λ)2(Z∗ZK(µ)e,K(µ)e) (75)

From the equation

Fλ(λ, µ) = P (76)

we get

λ∗(µ) =
2P

(K(µ)e, e)
,

from this results the function

µ → Fµ[λ∗(µ), µ] = P 2 (K(µ)Z
∗ZK(µ)e, e)

(K(µ)e, e)2
. (78)

A more detailed examination of the function (78) shows
that

Fµ[λ∗(0), 0] = P 2 (Z
∗Ze, e)
‖e‖4 (79)

for µ → ∞:

K(µ) → µ−1Y Y ∗

λ∗(µ) → 2P
(Y Y ∗e, e)

µ

Fµ[λ∗(µ), µ] → P 2

(Y Y ∗e, e)
. (80)

Thus we get the function increase

Fµ[λ∗(0), 0]− Fµ[λ∗(µ), µ]µ→∞

=
(Z∗Ze, e)(Y Y ∗e, e)− (e, e)2

(Y Y ∗e, e)

(
P

‖e‖2

)2

> 0. (81)

The proof of the inequality (81) will be carried out for the
convolution operator. In a general situation the use of the
spectral theory is needed. If the sequence {En}n=0,±1,±2,...

stands for the appropriate voltage harmonics of the source
and {bn}n=0,±1,±2,... the module components of the Z
spectrum then

(Z∗Ze, e)(Y Y ∗e, e)− (e, e)2

=

(∑
n

b2n|En|2
)(∑

m

1
b2m

|Em|2
)

−
(∑

n

|En|2
)(∑

m

|Em|2
)

=
∑∑

n>m

anm|En|2|Em|2

where:

anm =
b2n
b2m

+
b2m
b2n

− 2 =
(
b2n − b2m
bnbm

)
> 0.

This completes the proof.
Then for Q between

P 2

(Y Y ∗e, e)
< Q < P 2 (Z

∗Ze, e)
‖e‖4 (82)

there exist a unique root µ∗ which is calculated from

P 2 (K(µ)Z
∗ZK(µ)e, e)

(K(µ)e, e)
= Q. (83)

Fig. 8. The root determining process for the equation set (83)
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Therefore the second coordinate of the optimum point
(λ∗, µ∗) – the root of the power-distortion equations (56)
is

λ∗ =
2P

(K(µ∗)e, e)
. (84)

To complete the Fµ[λ∗(µ), µ] investigation it should be
proved that it is monotonic and unequivocal, what is
carried out in [2].

In a periodic steady state µ∗ is the root of the
convolution case of Eq. (83)

P 2

∑
n

(
Xn

1+µX2
n

)2
|En|2∑∑

n,m

|En|2|Em|2

(1+µX2
n)(1+µX2

m)

= Q (85)

Then the second coordinate of the optimum point (λ∗, µ∗)
is:

λ∗ =
2P∑

n

|En|2

1+µ∗X2
n

. (86)

Where Xn – stands for the spectrum of the inner source
reactance (see ex. 3). The frequency distribution of the
optimal current is given by

Iopt
n =

0.5λ∗
1 + µ∗X2

n

En. (87)

5. Conclusion

The afore presented results are connected with the prob-
lem of matching the load to the source.

This issue is presented in many disciplines connected
not only with electrical energy transportation. It consists
in the appropriate choice of the load to obtain the maxi-
mum power from the source. In the electrical domain this
problem is reduced to the choice of an appropriate current
signal which maximize source power functional i.e.

(e, i)− (Ri, i) → max .

Its solution is well known and leads to the operator
equation [1, 2, 7–10]:

Ri = 0.5e.

This is used to determine the power balance equation

Pmax = (e, idop)− 0.5(e, idop)

where
idop = 0.5R−1e

is the matching current signal.
From the foregoing power balance it results that ex-

actly one half of source power is lost. This fact makes
such matching method extremely impractical. Neverthe-
less, the knowledge of possible maximum source power is
useful.

It is possible to formulate a lot of more useful matching
problems. In the case of e.g. stiff sources – keeping

invariable voltage signal regardless of the current, there
exists the unique current signal giving prescribed source
power P .

This result is of a great practical importance and is
known as the Fryze current. In the present article this
signal is defined in the (6). However the problem becomes
more sophisticated when we take in consideration the
inner impedance Z operator of the source. It causes the
source becomes lossy and flexible. Nevertheless we can still
get a great variety of appropriate optimal currents using
the minimum criteria, concerning the power balance of the
circuit or shape restriction of signals. These results can
be applied to improve power quality when transmitting
it to many individual receivers. Obviously, to get the
optimal currents, some modification of the load is needed.
It is carried out by compensator circuits but this is the
problem which is not under the consideration in this
article.
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