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System reliability models for bridge structures
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Abstract. There is a growing need for a more accurate assessment of the load carrying capacity of highway bridges. The traditional approach
is based on consideration of individual components rather than structures. Consequently, the acceptance criteria are formulated in terms of the
allowable stress, or ultimate moment, in a component. However, it has been observed that the load carrying capacity of the whole structure
(system) is often much larger than what is determined by the design of components. The difference can be attributed to the system behaviour.
Quantification of this difference is the subject of the system reliability. There is a need to take advantage of the available system reliability
methods and advanced structural analysis methods and apply them in the design of bridges and evaluation of existing structures. The current
advanced analytical procedures allow for a numerically accurate but deterministic analysis of strain/stress in a bridge. Mathematical procedures
exist for the calculation of reliability for various idealized systems: parallel, series, and combinations. There are also new developments in
materials, technology, and field testing which can be used to improve bridge design and evaluation. This paper deals with calculation of the
reliability of the whole bridge structure, taking into account realistic boundary conditions, and site-specific load and resistance parameters.
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1. Introduction

The owners of highway bridges are often faced with
a serious problem. A considerable percentage of structures
are in a questionable condition while there are limited
resources for repairs and replacements. The major factors
that have contributed to the present situation are: the
age, inadequate maintenance, increasing load spectra and
environmental contamination [1]. The deficient bridges are
posted, repaired or replaced. The disposition of bridges
involves clear economical and safety implications. To
avoid high costs of replacement or repair, the evaluation
must accurately reveal the present load carrying capacity
of the structure and predict loads and any further changes
in the capacity (deterioration) in the applicable time
span. The traditional component-based approach often
does not allow to reveal the actual load carrying capacity.
Therefore, system reliability can be used as an important
tool in the efficient evaluation of existing structures.

The accuracy of bridge evaluation can be improved
by using the recent developments in bridge diagnostics,
structural tests and material tests. Advanced diagnostic
procedures can be applied to the evaluation of the current
capacity of the structure, monitoring of load and resis-
tance history and evaluation of the accumulated damage.
Full scale bridge tests can provide very useful informa-
tion about the structural behaviour. For example, recent
proof load tests confirmed that the load carrying capac-
ity of girder bridges is larger then analytically predicted
[2, 3], due to unintended composite action, partial fix-
ity of supports (frozen bearings), and the contribution of
sidewalks, parapets and railings. There is a need for sig-
nificantly more test data, covering various bridge types.
Recent developments in the area of materials allow for
a better understanding of the behaviour of bridge com-
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ponents. The availability of new materials may improve
bridge repair techniques. More data is now available on
bridge loads, static and dynamic. Available diagnostic
technologies, including state of the art digital signal pro-
cesses, integrated sensor systems, and microwave, acoustic
and optical techniques, can be applied in bridge evalu-
ation. However, extensive test programs are very costly.
Therefore, a considerable effort should be directed to-
wards evaluation and improvement of the current analyt-
ical methods, on the basis of available test data [4].

Computer methods of structural analysis have im-
proved the accuracy of representing the actual behaviour
of bridge components. Advanced programs (e.g. ABAQUS,
NASTRAN, ANSYS) are available for linear and non-
linear analysis of complex structural systems. A dense
element mesh allows for an accurate determination of
strain/stress at almost any point in the structure. One
major problem that remains is how to represent bound-
ary conditions and material properties. For example, the
actual support insitu is often different than an idealized
type, and strength of material and modulus of elasticity
can be different than what is assumed in design. The de-
terministic analysis is a useful tool, but there is need to
include the randomness of parameters such as these.

Load and resistance parameters are random variables.
Therefore, the probability of failure can be considered
as a rational measure of structural performance. New
advances that are significant for bridge evaluation have
taken place in the area of probabilistic methods. There
are procedures available for calculation of the probabil-
ity of failure for given limit state function and statistical
parameters of basic variables. There are simple closed
formed solutions, iterative methods, and simulations. The
advanced methods provide accurate results. In bridge en-
gineering, the probabilistic methods were mostly applied
in the development of a new generation of design codes
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(AASHTO LRFD 2004; CHBDC 2003: Eurocodes) [5–7].
However, they were dealing with ultimate limit states for
individual components rather than systems.

Furthermore, secondary elements such as barriers,
sidewalks, and diaphragms may increase the load car-
rying capacity of girder bridges. This in turn affects
reliability. The potential benefit of secondary elements on
the system reliability of girder bridges was considered by
Eamon and Nowak in [8]. Simple span, two lane structures
were considered, with composite steel girders supporting
a reinforced concrete deck. For structural analysis, a finite
element procedure was developed that combines a gril-
lage model of the bridge deck with solid elements for
edge-stiffening effects. It was found that the interaction of
typical secondary element combinations has a varying ef-
fect on system reliability, depending on element stiffness,
bridge span, and girder spacing.

The objective of this paper is to compare the reliabil-
ity of components and whole system for girder bridges.
The reliability analysis is performed for main girders, sec-
ondary elements, and sensitivity analysis is performed for
load and resistance parameters. The mathematical ideal-
ization is a function of geometry and material properties.
The obtained system reliability models can be applied
to develop more rational bridge design and evaluation
procedures.

The obtained reliabilities are compared with the target
values, selected by considering consequences of failure
and incremental (marginal) cost of safety. The target
reliability can be different for primary and secondary
components, single load path and multiple load path
components, and further depend on the time interval
between inspections [9]. In the paper the focus is on
the differences between the reliabilities calculated for
components and structural systems.

2. Limit states

The available reliability methods are presented in sev-
eral books [10]. Reliability analysis can be performed
using iterative procedures, by Monte Carlo simulations or
using special sampling techniques. Limit states are the
boundaries between safety and failure. In bridge struc-
tures failure can be defined as inability to carry traffic.
Bridges can fail in many ways (modes of failure), by crack-
ing, corrosion, excessive deformations, exceeding carrying
capacity for shear or bending moment, local or overall
buckling, and so on. Members can fail in a ductile or brit-
tle manner. In the traditional approach, each mode of
failure is considered separately.

There are three types of limit states. Ultimate limit
states (ULS) are mostly related to the bending capac-
ity, shear capacity and stability. Serviceability limit states
(SLS) are related to gradual deterioration, user’s com-
fort or maintenance costs. For example, in prestressed
concrete girders, a crack opening under heavy live load
is not a problem in itself. However, a repeated crack

opening may allow penetration of moisture and corrosion
of the prestressing steel. The serviceability limit states
such as cracking, deflection or vibration, often govern the
bridge design. The critical factors are both magnitude
and frequency of load. Other serviceability limit states,
vibrations or deflections, are related to bridge user’s com-
fort rather than structural integrity. The third type of
limit state is fatigue. The main concern is accumulation of
damage caused by repeated applications of load (trucks).
Therefore, the model must also include the load magni-
tude and frequency of occurrence, rather than just load
magnitude as is the case in the ultimate limit states.
This paper is focused on the ultimate limit state of the
moment carrying capacity.

3. Reliability index
A traditional notion of the safety limit is associated with
the ultimate limit states. For example, a beam fails if
the moment due to loads exceeds the moment carrying
capacity. Let R represent the resistance (moment carrying
capacity) and Q represent the load effect (total moment
applied to the considered beam). Then the corresponding
limit state function, g, can be written,

g = R − Q. (1)

If g > 0, the structure is safe, otherwise it fails. The
probability of failure, PF , is equal to,

PF = Prob (R − Q < 0) = Prob (g < 0). (2)

Let the probability density function (PDF) of R be fR

and PDF of Q be fQ. Then, let Z = R − Q. Z is also
a random variable and it represents the safety margin.

In general, the limit state function can be a function
of many variables (load components, influence factors,
resistance parameters, material properties, dimensions,
analysis factors). A direct calculation of PF may be very
difficult, if not impossible. Therefore, it is convenient to
measure structural safety in terms of a reliability index,
β. Reliability index is directly related to the probability
of failure:

β = −Φ−1(PF ) (3)
where Φ−1 = inverse standard normal distribution func-
tion. There are various procedures available for calcula-
tion of β. These procedures vary with regard to accuracy,
required input data and computing costs and they are de-
scribed in [10]. The simplest case involves the linear limit
state function, Eq. 1.

If both R and Q are independent (in the statistical
sense), normal random variables, then the reliability index
is,

β = (mR − mQ)/(σ2
R + σ2

Q)
1/2 (4)

where mR = mean of R, mQ = mean of Q, σR = standard
deviation of R and σQ = standard deviation of Q.

If both R and Q are lognormal random variables, then
β can be approximated by

β = (lnR − lnQ)/(σ2
ln R + σ2

ln Q)
1/2 (5)
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where lnR = lnmR − 0.5σ2
ln R ≈ lnmR for VR < 0.20;

lnQ = lnmQ − 0.5σ2
ln Q ≈ lnmQ for VQ < 0.20; σ2

ln R =
ln[V 2

R + 1] ≈ V 2
R for VR < 0.20; σ2

ln Q = ln[V 2
Q + 1] ≈ V 2

Q

for VQ < 0.20; VR = coefficient of variation of R; VQ =
coefficient of variation of Q.

The previous two equations require the knowledge
of only two parameters for each random variable, the
mean and standard deviation (or coefficient of variation).
Therefore, the formulas belong to the second moment
methods. If the parameters R and Q are not both normal
or both lognormal, then the formulas give only an ap-
proximate value of β. In such a case, the reliability index
can be calculated using the iterative procedure, sampling
techniques, or by Monte Carlo simulations [10].

Rackwitz and Fiessler [11] developed an iterative pro-
cedure based on normal approximations to non-normal
distributions at the so-called design point. Beginning
with the resistance, R, let FR be the cumulative distri-
bution function (CDF) and fR the probability density
function (PDF) for R. The initial value for R at the de-
sign point is guessed as R∗. Next, FR is approximated by
a normal distribution, FR′ , such that

FR′ (R∗) = FR(R∗) (6)

and
fR′(R∗) = fR(R∗). (7)

The standard deviation of R′ is

σR′ = φ{Φ−1[FR(R∗)]}/fR(R∗) (8)

where φR = P DF of the standard normal random vari-
able and ΦR = CDF of the standard normal random
variable.

The mean of R′ is,

mR′ = R∗ − σR′ Φ−1[FR(R∗)]. (9)

The same procedure, described by Eq. 6–9, is carried out
for all random variables in the limit state function (in
this case, Q).

Reliability Index β is then computed by:

β = (mR′ − mQ′)/(σ2
R′ + σ2

Q′)1/2. (10)

A new design point value is then calculated:

R∗ = mR′ − βσ2
R′ /(σ2

R′ + σ2
Q′)1/2. (11)

The second iteration then begins; the approximating nor-
mal distributions are found for FR and FQ at the new de-
sign point. The reliability index is calculated using Eq. 10,

and the next design point is found from Eq. 11. Calcula-
tions are continued until R∗ does not change in consecu-
tive iterations. The procedure has been programmed and
calculations can be carried out by computer.

4. System reliability model for girder
bridges

Traditional design of structures is based on design of in-
dividual components such as beams, columns, tensions
members, and/or connections (bolts, welds). The design
codes specify nominal values of loads to be resisted by
each component, and the objective of the design is to
determine the required value of nominal resistance with
predetermined safety factors. The load carrying capac-
ity (resistance) of a component is expressed in terms of
materials (grades and types) and dimensions (geometry).
All structural components must satisfy the basic code
requirement, i.e. the load effect cannot exceed the resis-
tance. On the other hand, in most cases, component-based
design is conservative because of redundancy and ductil-
ity. When the load in a critical component approaches
the ultimate value, other components can take additional
loads and prevent a failure. However, the quantification
of this load sharing requires a special approach using the
system reliability models.

A considerable effort was directed on the development
of the reliability analysis procedures for structural com-
ponents. The formulation of the limit state function for
a structural system is much more difficult than for a com-
ponent. In this paper, the reliability analysis is performed
for the whole bridge. The load and resistance models, and
the limit state functions are defined as follows.

The basic load combination include dead load and live
load (static and dynamic). Live load is represented in form
of trucks. It was observed that the axle configuration is
not important, therefore, two trucks are selected: a 3-axle
vehicle (denoted by S) and a 5-axle vehicle (denoted by
T ), as shown in Fig. 1. It is assumed that the axle spacing
and load distribution factors per axle are constants, but
the gross vehicle weight (GVW) is a random variable. The
transverse position of the truck within the roadway (curb
distance) is also a random variable. An example of the
probability density functions (PDF) of the curb distance
are shown in Fig. 2, for two traffic lanes. Each PDF
represents a curb distance for a line of wheels, spaced

Fig. 1. Truck configurations considered in the project
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Fig. 2. Example of the Probability Density Functions (PDF) of the Curb Distance. Each PDF Represents a Line of Truck Wheels

Fig. 3. Considered Truck Positions and Probabilities of Occurrence

at 1.8 m for a truck. Various possible load cases and
probabilities of occurrence are shown in Fig. 3, including
simultaneous presence with two trucks in the same lane,
and side-by-side.

Bridge resistance is determined for each transverse po-
sition of the truck, in terms of the truck weight. Material
and component parameters of the bridge are generated
using Monte Carlo technique. A finite element method
(FEM) is used to calculate the strain/stress and deflec-
tions. Failure is defined as an excessive deflection. The
gross vehicle weight is gradually increased until the de-
flection exceeds the acceptable level. The resulting GVW
is considered as the system resistance, corresponding to
the given curb distance. GVW is a random variable, with
the statistical parameters established from the weigh-in-
motion measurements.

The reliability index can be calculated for each value
of curb distance. Then, the system reliability index for
the bridge can be determined as the weighted average.

5. Bridge load model

Bridge dead load and live load (truck traffic) are the two
load categories considered in this study. The load models
used are based on those developed for the calibration of
the AASHTO LRFD Code (2004) [5] for comparison con-
sistency [12]. The basic statistical parameters considered
are bias factor λ (ratio of mean to nominal value) and
coefficient of variation V .

Dead load items included are the weight of the gird-
ers, deck slab, wearing surface, barriers, sidewalks, and
diaphragms, when applicable. The bias factor λ = 1.03
and V = 0.08 for factory-made components (girders, di-
aphragms), λ = 1.05 and V = 0.10 for cast-in-place
components (deck, barriers, sidewalks), and asphalt wear-
ing surface is taken to have a mean value of 90 mm
with V = 0.25.

Live load parameters are based on actual load data
from a survey of heavily-loaded trucks on Michigan high-
ways. This model assumes that every 15th truck on the
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bridge is accompanied by another truck side-by-side. It
further assumes that with every 10th simultaneous occur-
rence (trucks side-by-side), the truck weights are partially
correlated (ρ = 0.5), and every 30th occurrence the truck
weights are fully correlated (ρ = 1.0). Moreover, with
regard to multiple presence (multiple trucks in a single
lane), every 50th truck is followed by another truck with
distance between trucks from 4.5 and 30 m; every 150th
truck is followed by a partially correlated truck (with re-
gard to weight); and every 500th truck is followed by
a fully correlated truck. The results of the simulations,
as pertinent to this study, are as follows: for the single-
lane loaded case, bias factor λ (ratio of actual moment
to AASHTO LRFD HL-93 design moment) for a single
truck varies from 1.3 for the shortest span (10m) to 1.2
for longer spans (50 m), while coefficient of variation V
is 0.11 for all spans. For the two-lanes loaded case, λ for
each truck varies from 1.2 at 10 m to 1.0 at 50 m (note λ
for the total moment on the bridge would then be equiv-
alent to 1.2 × 2 trucks = 2.4 and 1.0 × 2 = 2.0), while V
for each truck varies from 0.14 at 10 m to 0.18 at 50 m.

The variation in transverse traffic position can be
based on a survey of the lateral position of vehicles on
interstate highways in southeast Michigan. The density
function was approximated by a lognormal distribution
with a coefficient of variation of 0.33. For a standard
3.63 m wide lane, the mean value is equal to 0.91 m,
measured from the edge of the lane to the centerline of
the outermost vehicle wheel (this corresponds to a typical
1.82m axle width truck to be centered in the lane).

Dynamic load depends on roughness of the surface,
dynamic properties of the bridge, and suspension system
of the vehicle. Dynamic load factor is defined as the
ratio of dynamic strain (or deflection) and static strain
(deflection). Field tests conducted by the University of
Michigan revealed a dynamic load factor of less than 0.10
for two heavily loaded trucks traveling side-by-side over
various bridges [13, 14]. Based on these results, the mean
dynamic load factor is conservatively taken as 0.10 while
the coefficient of variation is 0.80.

6. Resistance model

The statistical parameters of the load carrying capacity
(resistance) of components can be based on the previ-
ous research [12]. The basic parameters are summarized
in Table 1. Laboratory results and field testing of actual
bridges indicate that the traditional analysis models used
for design do not accurately predict structural behaviour.
One of the most significant discrepancies in behaviour
can be seen in the prediction of ultimate capacity. Al-
though limited data exists, actual girder bridge ultimate
capacities have been measured from approximately 1.4 to
3.0 times the AASHTO Code-predicted values. For com-
parison, the Code value is determined by computing the
capacity of a single girder multiplied by the number of
girders on the bridge.

Table 1
Statistical Parameters of Component Resistance

Type of Structure λ V

Non-composite steel girders

Moment 1.12 0.10

Shear 1.14 0.105

Composite steel girders

Moment 1.12 0.10

Shear 1.14 0. 105

Reinforced concrete T-beams

Moment 1.14 0.13

Shear 1.20 0.155

Prestressed concrete girders

Moment 1.05 0.075

Shear 1.15 0.14

Discrepancies between actual and predicted behaviour
exist primarily because current models do not account
for important features of actual bridges which signifi-
cantly affect load distribution and structural capacity.
Although there are many such features, among the most
important are the presence of secondary elements such as
diaphragms, barriers, and sidewalks. Although the lim-
ited experimental data that exists seems to indicate that
these elements may perform favorably, even until ulti-
mate capacity, they cannot be relied upon in general to
act as structural components, as they were not designed
for this purpose. However, the potential benefits of in-
cluding these elements as structural members may be
significant, as indicated above.

In the present study, a system reliability model is
developed for a bridge with steel girders composite with
a reinforced concrete deck slab. Conservatively, the effects
of secondary elements (barrier and parapet) are neglected.
The bridge resistance is considered in terms of a truck
(the same one as considered for the live load model).
The statistical parameters of resistance are determined
by Monte Carlo simulations.

The mechanical properties of the girders and concrete
deck slab are generated for each Monte Carlo run. Re-
sistance is calculated for each transverse position of the
truck. The truck weight is gradually increased until the
deflection limit is exceeded. Resistance is equal to the
maximum truck weight. The analysis is repeated to deter-
mine the mean maximum truck weight and its coefficient
of variation. Then, the simulations are repeated for other
transverse truck positions.

7. Reliability analysis for selected bridges

The reliability analysis was performed for a representative
group of composite steel girder bridges. Four span lengths
were considered: 12 m, 18 m, 24 m and 30 m, and three
girder spacings: 1.8 m, 2.5 m and 3.0 m.
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Live load was applied in form of trucks shown in Fig. 1.
The load-deflection curve were determined using a non-
linear FEM program. A typical load-deflection curve for
the span of 18 m and girder spacing of 2.5 m is shown
in Fig. 4 for two considered trucks. The results for three
different transverse positions of a 3-axle truck on a 12m
span are shown in Fig. 5. Case 3 corresponds to truck
being in the center, and Case 1 closer to the curb.

Fig. 4. Load-Deflection Curves for Two Considered Trucks,

Span = 18 m and Girder Spacing = 2.5 m

Fig. 5. Load-Deflection Curves for Different Trucks Positions,

Single Tandem, Span = 12m and Girder Spacing = 1.8 m

Reliability indices were calculated for individual gird-
ers following the procedure used in calibration of the
AASHTO LRFD Code [12]. It was assumed that live
load distribution factors specified in the design code are
applicable (linear load distribution). The analysis was
performed for a wide spectrum of girder resistance val-
ues (load carrying capacity), resulting in the reliability
indices from 0.5 through over 6.0.

Fig. 6. System Reliability Index vs. Girder Reliability Index for

Different Spans

Fig. 7. System Reliability Index vs. Girder Reliability Index for

Different Girder Spacings, Span = 18 m

For each girder reliability index, the corresponding
system reliability index was calculated. The results are
shown in Fig. 6, for four considered spans. In Fig. 7, the
girder reliability indices are plotted vs. system reliability
indices for three considered girder spacings.

An important consideration in the system reliability
analysis is degree of correlation between the components.
There is little data available to provide a basis for sta-
tistical parameters. Therefore, the reliability analysis was
carried out for two extreme cases: no correlation, with
the coefficient of correlation, ρ = 0, and full correlation,
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with the coefficient of correlation, ρ = 1. For the span of
18 m and girder spacing of 2.5 m, the results are shown
in Fig. 8.

Fig. 8. System Reliability Index vs. Girder Reliability Index for No
Correlation and Full Correlation between Girder Resistances, Span

= 18m, Girder Spacing = 2.5 m

8. Sensitivity analysis

Structural reliability depends on a number of load and
resistance parameters. These parameters are represented
by the statistical parameters such as the mean, bias factor
and coefficient of variation. However, some statistics can
be based on insufficient data base and/or subjective
judgment. Therefore, it is important to identify the most
sensitive parameters in the reliability analysis. These
parameters can then be considered as the prime target in
the effort to control probability of failure.

Using the developed system reliability procedure, the
sensitivity functions were developed for an individual
composite steel girder and for the whole bridge. Each
sensitivity function represents the relationship between
a parameter and reliability index. The results of the
computations performed for a composite steel bridge
girder are plotted in Fig. 9. Various values of the bias
factor (mean value) are considered for the considered
parameter, from the actual value required by the code, up
to value that is over 40% different, either larger (loads) or
smaller (strength). The sensitivity functions for the whole
composite steel girder bridge are shown in Fig. 10.

The results clearly indicate that the most important
parameters are related to resistance, in particular plastic
section modulus and yield stress of the steel beam. On the
other hand, the least sensitive parameters are compressive
strength of concrete and effective width of the slab. Dead
load estimation is also unimportant.

Fig. 9. Sensitivity Functions for a Composite Steel Girder; f ′
c =

Compressive Strength of Concrete, b = effective width of the concrete
slab, h = effective depth of the slab, Z = plastic section modulus of
steel beam, fy = yield stress of steel, D = dead load moment, L =

live load moment, I = dynamic load moment

Fig. 10. Sensitivity Functions for a Composite Steel Girder Bridge;
f ′

c = Compressive Strength of Concrete, b = effective width of the
concrete slab, h = effective depth of the slab, Z = plastic section
modulus of steel beam, fy = yield stress of steel, D = dead load

moment, L = live load moment, I = dynamic load moment

9. Conclusions

Reliability can be considered as a rational measure of
structural performance. The reliability analysis methods
were developed and applied mostly for structural com-
ponents (elements), rather than structural systems. The
objective of this paper is to present a procedure for cal-
culation of the reliability index for girder bridges. The
analysis demonstrated on a representative sample of com-
posite steel girder bridges. The calculated reliability in-
dices are compared with reliability indices determined for
individual girders (elements).
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It is observed, that the ratio of βsystem/βgirder de-
creases with increasing βgirder . It is about 2 for βgirder =
1, and 1.3 for βgirder = 6.

It was also found that the coefficient of correlation, ρ,
can decrease βsystem by 15–30%. There is a need for more
data on the actual conditions.

Sensitivity analysis can be used as an efficient tool to
identify the most important load and resistance parame-
ters. The analysis can be performed for the components
(elements) and whole structural systems.
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