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One-dimensional elongation of a cubic crystal
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Abstract. Large elongation in one definite direction of a crystal of cubic symmetry is considered. The equations of second order elasticity
theory are applied. In this approximation three constants of the second order and six constants of the third order characterize the crystal. The
stress is a function of the elongation direction. The elongation directions for which the stress reaches an extreme value have been analyzed.
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1. Second order elasticity

Crystals are of special interest in a fundamental research.
Plates or bars cut out from a crystal are frequently used in
physical equipment. Taking into account the symmetries
(called point groups) the crystals may be divided into
32 classes. All crystals belonging to one class have the
same macroscopic symmetry. Cubic crystals posses the
highest crystallographic symmetry. In the linear case
their mechanical behaviour is described by three elastic
constants. Triclinic crystals belong to the class of the
lowest symmetry. In the linear case triclinic crystals are
described by twenty-one elastic constants.

Clusters of chaotically oriented single crystals are
globally isotropic. Isotropic material posseses the highest
mathematically possible symmetry. Mechanical properties
of linear isotropic material are described by only two
elastic constants. Most of the experience in engineering
is connected with isotropic materials. It must be stressed
that mechanically isotropic crystals do not exist.

External load applied to a crystal results in its defor-
mation. Since the crystal is not isotropic the deformation
of a crystal essentially differs from that of isotropic ma-
terial. In the presented paper the analysis of the forces,
necessary to produce a defined in advance elongation is
given. We confine to one symmetry only, namely to the
cubic symmetry. Typical material of this symmetry is the
crystal of copper or silver. Obviously linear material is
of special interest. However in the nonlinearity some ad-
ditional, very important phenomena are present. Trying
to avoid complex, non-transparent considerations we do
not consider general elasticity, but confine to the second-
order theory. The second order theory of elasticity was
presented in the monograph of Green and Adkins [1]. All
equations of the first chapter of the presented paper are
based on this monography. Introduce the Cartesian coor-
dinates xj . The material point of the body is identified
by its position xj in the stress-free initial state. In the
course of time the point xj moves to a new position.
The values of the displacement vector ui are functions of
the Cartesian coordinates xj and time t, ui = ui(xj , t).
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In the presented paper we compare the initial and final
states and time t serves only as parameter. Therefore for
simplicity we shall write ui = ui(xj). Partial derivative
of ui(xj) with respect to xj is the displacement gradi-
ent ui,j . The strain tensor εij may be expressed by the
displacement gradient

εij =
1
2
(ui,i + uj,i + ur,iur,j). (1)

Summation convention is accepted in the whole presented
paper. Due to the presence of the product ur,iur,j the
deformation tensor εij always is a nonlinear function of
the displacement gradient. The linear measure of strain
which disregards the nonlinear term may be used only
in the linear theory, where the stress is a linear function
of strain. The relation (1) is purely geometrical. No
material properties are involved. The elastic energy Φ
(strain energy) is a nonlinear function of strain εij .

In second order elasticity the expression for the elastic
energy Φ (per unit volume in the stress-free state) takes
into account the squares, but neglects the cubes and
higher powers of strain tensor εij . The elastic energy Φ
reads

Φ =
1
2

cijpqεijεpq +
1
6

cijpqrsεijεpqεrs. (2)

The elastic energy is a polynomial of the third grade of
strain, but polynomial of the sixth grade of the displace-
ment gradient. The coefficients 1/2 and 1/6 present in
Eq. (2) are commonly accepted in the literature [2].

The fourth rank tensor cijpq is the tensor of sec-
ond order elastic constants and cijpqrs is the tensor
of third order elastic constants. In some older papers
those tensors are called first and second order elastic
constants, respectively. Since the expression (2) is homo-
geneous in εij it may be assumed that cijpq = cpqij

and cijpqrs = cpqijrs = cijrspq . Since εij is symmet-
ric without loosing the generality it may be assumed
that the constants satisfy the relations cijpq = cjipq and
cijpqrs = cjipqrs. The elastic constants of the second or-
der and of the third order may therefore be assumed to
possess the following symmetries

cijpq = cpqij = cjipq , (3)

cijpqrs = cpqijrs = cijrspq = cjipqrs. (4)
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Symmetry of the crystal results in additional sym-
metries. As mentioned above the second order elastic
constants cijpq for triclinic symmetry may be expressed
by 21 different material constants. In the simplest case of
cubic symmetry there are only 3 non-zero different con-
stants of the second order and 6 material constants of the
third order. The 81 constants cijkm and 729 constants
cijkmpq may therefore for the cubic crystal be expressed
by only 9 elastic constants. The isotropic material is char-
acterized by 2 constants of second order (Lame constants)
and 3 constants of third order only. There exist several
different methods of measuring the constants of the third
order. A measurement of forces in static deformation is
one of them, but the most frequently used method is
based on measurements of the ultrasonic wave speeds.

Denote by Hij the symmetrized derivative of the
elastic energy Φ with respect to the deformation εij

Hij =
∂Φ

∂εij
+

∂Φ

∂εji
. (5)

From (2) and the symmetries (3)–(4) there follows

∂Φ

∂εij
= cijpqεpq +

1
2

cijpqrsεpqεrs (6)

and further

Hij = 2cijpqεpq + cijpqrsεpqεrs. (7)

The stress tensor τij may be expressed by the function
Hij and the displacement gradient ui,j

2τij = Hij +Hiruj,r (8)

The stress tensor τij is not symmetric. It is in fact the
first Piola-Kirchhoff stress tensor [3]. This tensor may
be expressed by the deformation gradient and material
constants.

Consider elongation in the direction ni. This is a ho-
mogeneous deformation in which material elements paral-
lel to ni increase their length, and the material elements
orthogonal to ni remain unchanged. The displacement
vector ui is parallel to ni and its length is proportional
to the distance nrxr from the plane nrxr = 0. Therefore
the displacement ui reads

ui(xr) = νninrxr, (9)

where ν is the measure of deformation. On the whole
plane nrxr = const the displacement vector is the same.
The displacement gradient ui,j and the strain tensor εij

may now be calculated from (1) and (9)

ui,j = νninj, εij = νninj +
1
2

ν2ninj . (10)

For each material, linear and nonlinear strain tensor con-
sists of a term proportional to ν and a term proportional
to ν2. Substitute the above expression into (8) and take
into account the symmetries of cijpq and cijpqrs to obtain
the following expression for the stress tensor

τij = νcijpqnpnq + ν2
(
1
2

cijpqrsnpnqnrns

+
1
2

cijpqnpnq + njcirpqnrnpnq

)
(11)

The stress tensor τij is determined uniquely by the strain
energy Φ and the shear. In (11) the terms of the order ν3

have been neglected.
The stress vector τi acting on a surface with unit

normal ni equals to the product of the stress tensor τij

and the vector ni

tj = τijni. (12)

In the presented Section we do not consider the stresses
acting on other surfaces. From the above relations there
follows

tj = νcijpqninpnq + ν2
(
1
2

cijpqrsninpnqnrns

+
1
2

cijpqninpnq + njcirpqninrnpnq

)
(13)

In general this vector is not collinear with ni. Its
squared length equals to titi and its projection on ni

equals to tini. It follows that the modulus of the compo-
nent sn parallel to ni and the modulus of the component
st orthogonal to ni are given by the relations

sn = tjnj,

s2
t = tjtj − s2

n.
(14)

Obviously sn and st may be calculated within ν2, not
ν3. In accordance with (13) the formulae of the form

sn = νsn1 + ν2(sn2 + sn3),

st = nst1 + n2(st2 + st3)
(15)

are expected. From (13–14) the expressions for sn1, sn2,
sn3 follow

sn1 = cijpqninjnpnq,

sn2 =
3
2

cijpqninjnpnq,

sn3 =
1
2

cijpqrsninjnpnrnqns.

(16)

Pass to the calculation of st. The form (16) must be
valid for each choice of cijpq , cijpqrs and ν. The long
formulae for st1, st2 and st3 will not be quoted. The
component st may be computed from (14).

The inclination angle ξ of the stress to the surface,
i.e. the angle between tj and nj is of a great interest.
Obviously there is

cos ξ =
|tjnj |√

tjtj
, tg ξ =

tt

tn
. (17)

Stiffness s equals to the ratio of the component of tj

in the direction nj and the measure of deformation ν.
The sum sn, cf. (16) is the measure of stiffness.

Since the expressions (17) for sn1, sn2 and sn3 are even
functions of ni the values sn1, sn2 and sn3 are invariant
under the transformation

(n1, n2, n3) ⇒ (−n1, −n2, −n3). (18)
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Note that the vector tj as given by (13) is an odd func-
tion of ni. Therefore its length is an even function of ni. It
follows that tjtj and st are invariant under the transfor-
mation (18). More detailed examination of the expressions
proves that for cubic symmetry the six above values are
additionally invariant under the transformations

(n1, n2, n3) ⇒ (n2, n1, n3), (n1, n2, n3)

⇒ (n1, n3, n2), (n1, n2, n3) ⇒ (n3, n2, n1). (19)

The above invariances allow to confine the analysis to the
directions located between the vectors (1,0,0), (1,1,0) and
(1,1,1), cf. Fig. 1.

2. Linear elasticity

Linear elastic properties of a cubic crystal are defined by
three independent elastic constants of second order. In
the abbreviated notation (ε1 = ε11, ε2 = ε22, ..., ε4 = 2ε23,
etc.) they are h11, h12 and h44, cf. [2]. All 81 components
of the elastic constants of tensor cijpq may be expressed
by the three constants of the h11, h12 and h44, namely

c1111 = c2222 = c3333 = h11,

c1122 = c1133 = c2233 = c2211 = c3311 = c3322 = h12, (20)

c2323 = c2332 = c3223 = ... = c1212 = c1221 = h44.

All other components of the tensor cijpq e.g. c1112 are
equal to zero.

To gain recognition of the stresses in this Section we
shall analyze the influence of elastic constants on stress
in pure one-dimensional strain. We assume in turn: i)
h11 = 1, h12 = 0, h44 = 0, ii) h11 = 0, h12 = 1, h44 = 0
and iii) h11 = 0, h12 = 0, h44 = 1. As an example a
definite material (copper) will be considered later.

Calculate the stresses for the following eight selected
directions

n
(1)
i = (0, 0, 1), n

(2)
i = (1/2, 0, 1), n

(3)
i = (0, 1, 1),

n
(4)
i = (1, 1/2, 1), n

(5)
i = (1, 1, 1), n

(6)
i = (1/3, 1/3, 1),

n
(7)
i = (2/3, 1/3, 1), n

(8)
i = (2/3, 2/3, 1). (21)

Fig. 1. Projection of selected directions on the x3 = 0 surface

In Fig. 1 the front side of a cube of dimension 2×2×2
is shown. This side is a square of dimension 2 × 2, situ-
ated on the plane x3 = 1. In Fig. 1 there are shown the
points, where the eight vectors n

(1)
i , n

(2)
i , ..., n

(8)
i intersect

the plane x3 = 1. The three vectors n
(1)
i , n

(3)
i , n

(5)
i are

the symmetry directions of the cube. Due to the symme-
try of the problem (cf. Eq. (19)) each extension of the
crystal (defined by vector ni) is equivalent to an exten-
sion situated in the triangle (n1, n3, n5). In particular the
extensions in the directions (1,1,1/2) and (1/2,1,1) are
equivalent to the extension in the direction (1,1/2,1) listed
above. Detailed calculations show, that the spherical an-
gle corresponding to the triangle n

(1)
i , n

(3)
i , n

(5)
i equals to

π/12. This angle is equal to 1/48 of full spherical angle
4π, that represents all possible directions of the three di-
mensional space. Note that for an isotropic material all
extension directions are equivalent to only one, arbitrary
chosen direction.

For the eight directions (21) the linear stress is de-
termined by values listed in Table 1. The normal linear
stress tn1 and the linear shear stress tt1 are given. The
angle ξ is the inclination of the total stress to the sur-
face. The values 1.571 marked by an asterisk are the limit
values, where the expression for tangens has the form 0/0.

Table 1
Longitudinal and transverse components of linear stress and ξ

h11 = 1 h12 = 1 h44 = 1

tn1 tt1 ξ tn1 tt1 ξ tn1 tt1 ξ

n
(1)
i 1.000 0 0 0 0 1.571* 0 0 1.571*

n
(2)
i .680 .240 .339 0.320 0.240 .644 .640 .480 .644

n
(3)
i .500 0 0 .500 0 0 1.000 0 0

n
(4)
i .407 .106 .252 .593 .105 .175 1.185 .210 .175

n
(5)
i .333 0 0 .667 0 0 1.333 0 0

n
(6)
i .686 .281 .388 .314 .281 .729 .628 .561 .729

n
(7)
i .500 .198 .388 .500 .198 .378 1.000 .397 .378

n
(8)
i .391 .147 .359 .609 .147 .237 1.218 .294 .237
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The actual values of stress tn1 and tt1 may be obtained
by multiplying the values quoted in the Table by the value
of the elastic constant of the material (h11, h12, or h44)
and the deformation measure ν. Note that n

(1)
i , n

(3)
i , n

(5)
i

are the symmetry directions of the cube and therefore the
stress is parallel to the elongation direction.

The overall (linear) properties take into account the
actual values of all elastic constants of the second order.
Calculate the stresses for one definite material, namely to
copper. Copper crystallizes in the cubic symmetry of the
type VIIb for which there exist only three different elastic
constants of second order h11, h12, h44 and six different
elastic constants of the third order h111, h112, h123, h144,
h155, h456, cf. [2, 4]

h11 = 169 GPa, h12 = 122 GPa, h44 = 73.5 GPa, (22)

h111 = −1350 GPa, h112 = −800 GPa,
h123 = −120 GPa, h144 = −66 GPa,
h155 = −720 GPa, h456 = −32 GPa.

(23)

The values of the third order will be needed in the
next Section. Taking into account the values (22) we
obtain the following coefficients

Table 2
The components of linear stress and

inclination angle ξ for copper

tn1 [GPa] tt1 [GPa] ξ [radian]

n
(1)
i 169.00 0 0

n
(2)
i 202.15 24.86 .122

n
(3)
i 220.80 0 0

n
(4)
i 230.39 10.85 .047

n
(5)
i 238.07 0 0

n
(6)
i 201.54 29.06 .143

n
(7)
i 220.80 20.55 .093

n
(8)
i 232.09 15.21 .065

Note that for the directions n
(1)
i , n

(3)
i and n

(5)
i the stress

is purely normal to the surface. The real stresses may be
obtained by multiplication of the values in columns tn1

and tt1 by ν. The inclination angles are different from
those quoted in the Table 1.

3. Nonlinear terms

There exist two kinds of the nonlinearity of the stress-
strain relation. First of them is the physical nonlinearity.
It manifests itself in the presence of the elastic constants
of the third order. For the cubic symmetry there exist
six different elastic constants of the third order. In the
abbreviated notation these constants are h111, h112, h123,
h144, h155 and h456. In the tensor notation the non-
zero elastic constants are c111111, c111122, c112233, c112323,
c113131, c233112. Other non-zero components follow from
the tensor symmetries. The elastic constants of second
order contribute to stress proportional to ν2.

The second kind of nonlinearity is of another ori-
gin. Because in the expression for deformation εij the
nonlinear product ur,iur,j is present, even in physically
linear material the nonlinear terms occur. This fact is the
source of geometrical nonlinearity. It manifests itself in
the non-zero values of sn2, st2.

We start with the geometrical nonlinearity. For h11 =
1, h12 = 1 and h44 = 1 and the eight directions (ϑ, ϕ)(K)

selected in the previous Section the values of longitudinal
and transverse forces are given in the Table 3. In order
to obtain stress in any material the values given in the
Table must be multiplied by ν2 and the value of elastic
constant of the second order for that particular material.
The values 1.571 marked by an asterisk were calculated
as the limiting values.

Table 3
Coefficients tn2, tt2 and ξ for the geometrical nonlinearity

h11 = 1 h22 = 1 h44 = 1

tn2 tt2 ξ tn2 tt2 ξ tn2 tt2 ξ

n
(1)
i 1.500 0 0 0 0 1.571* 0 0 1.571*

n
(2)
i 1.020 .120 .117 .480 .120 .245 .960 .240 .245

n
(3)
i .750 0 0 .750 0 0 1.500 0 0

n
(4)
i .611 .052 .086 .889 .052 .059 1.778 .105 .059

n
(5)
i .500 0 0 1.000 0 0 2.000 0 0

n
(6)
i 1.029 .140 .135 .471 .140 .289 .942 .281 .289

n
(7)
i .750 .099 .131 .750 .099 .131 1.500 .198 .131

n
(6)
i .585 .073 .125 .913 .073 .080 1.827 .147 .080

Note that for the directions n
(1)
i , n

(3)
i and n

(5)
i the

second order geometrical nonlinearity stress is purely
normal to the surface.

For copper the coefficients for geometrical nonlinearity
are given in Table 4. The inclination angles are rather
small, do not exceed 0.05 radians.

Table 4
Geometrical nonlinearity for copper

tn2 [GPa] tt2 [GPa] ξ [radian]

n
(1)
i 253.50 0 0

n
(2)
i 303.23 12.43 .041

n
(3)
i 331.20 0 0

n
(4)
i 345.59 5.43 .016

n
(5)
i 357.10 0 0

n
(6)
i 302.30 14.53 .048

n
(7)
i 331.20 10.28 .031

n
(8)
i 348.14 7.60 .022

Pass to the physical nonlinearity. Tables 5 and 6 give
the longitudinal and transverse stress separately for each
elastic constant of the third order.
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Table 5
Coefficients tn3, tt3 and ξ for h111 = 1, h112 = 1, h123 = 1

h111 = 1 h112 = 1 h123 = 1

tn3 tt3 ξ tn3 tt3 ξ tn3 tt3 ξ

n
(1)
i .500 0 0 0 0 1.571* 0 0 1.571*

n
(2)
i .260 .120 .432 .240 .120 .464 0 0 1.571*

n
(3)
i .125 0 0 .375 0 0 0 0 1.571*

n
(4)
i .088 .029 .318 .346 .017 .050 .066 .047 .615

n
(5)
i .056 0 0 .333 0 0 .111 0 0

n
(6)
i .275 .128 .435 .205 .102 .461 .020 .026 .899

n
(7)
i .145 .084 .524 .316 .062 .195 .039 .042 .813

n
(8)
i .087 .056 .572 .325 .022 .066 .088 .045 .374

Table 6
Coefficients tn3, tt3 and ξ for h144 = 1, h155 = 1, h456 = 1

h144 = 1 h155 = 1 h456 = 1

tn3 tt3 ξ tn3 tt3 ξ tn3 tt3 ξ

n
(1)
i 0 0 1.571* 0 0 1.571* 0 0 1.571*

n
(2)
i 0 0 1.571* .960 .480 .464 0 0 1.571*

n
(3)
i 0 1.571* 1.500 0 0 0 0 1.571*

n
(4)
i .395 .279 .615 1.383 .070 .050 .527 .372 .615

n
(5)
i .667 0 0 1.333 0 0 .889 0 0

n
(6)
i .122 .153 .899 .820 .408 .461 .162 .204 .899

n
(7)
i .236 .250 .813 1.264 .250 .195 .315 .333 .813

n
(8)
i .528 .207 .374 1.299 .086 .066 .703 .276 .374

The values given in Tables 5 and 6 represent the
physical nonlinearity. In order to obtain stresses for a
definite material the coefficients tn3, tt3 quoted in Tables 6
and 7 must be multiplied by ν2 and additionally by the
value of elastic constant of the third order for that
particular material. The values 1.571 marked by asterisk
were calculated as the limiting values. The inclination
angle for physical nonlinearity is much larger than that for
geometrical nonlinearity. For directions where stresses are
small it reaches 90circ. Obviously again for the directions
n

(1)
i , n

(3)
i and n

(5)
i the stress is purely normal to the

surface.

Table 7

Physical nonlinearity for copper

tn3 [GPa] tt3 [GPa] ξ [radian]

n
(1)
i −675.00 0 0

n
(2)
i −1234.20 279.60 .223

n
(3)
i −1548.75 0 0

n
(4)
i −1442.37 67.59 .047

n
(5)
i −1387.44 0 0

n
(6)
i −1141.18 222.93 .193

n
(7)
i −1388.44 140.99 .101

n
(8)
i −1381.08 30.33 0.022

Note that for extension the longitudinal stresses tn3 are
negative in contrast to the longitudinal stresses tn2 quoted
in the Table 4, that are positive.

Finally consider jointly both physical and geometrical
nonlinearities for copper. Table 8 gives the corresponding
values, again for the eight directions selected above.

Table 8
Geometrical and physical nonlinearity for copper

tn2 + tn3 [GPa] tt2 + tt3 [GPa] ξ [radian]

n
(1)
i −421.50 0 0

n
(2)
i −930.97 267.17 .279

n
(3)
i −1217.55 0 0

n
(4)
i −1096.79 73.02 .066

n
(5)
i −1030.34 0 0

n
(6)
i −838.87 208.39 .243

n
(7)
i −1057.24 134.18 .126

n
(8)
i −1032.95 22.73 .022

For elongation in the symmetry directions n
(1)
i , n

(3)
i

and n
(5)
i shear stress tt2+tt3 and angle ξ are equal to zero.

The geometrical and physical nonlinearities neutralize to
some extent each other. Therefore the actual inclination
angles for copper are in general smaller than those quoted
separately in the Tables 4 and 7.
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4. Extreme values

In the present Section the extreme values will be analyzed.
The shearing planes and shearing directions for which one
of coefficients sn1, sn2, st3, . . . reaches its extremum will
be found. Their sums e.g. sn2 + sn3, will be considered,
too. The three components of the vector ni are the
independent variables. Three constraints expressing the
fact, that ni1 is a unit vector must be taken into account.
In order to avoid these constraints in the computations
introduce two new, real parameters (ϑ, ϕ). Write the
components of the vector ni in the form

n1 = sinϑ cosϕ, (24)

n2 = sinϑ sinϕ, (25)

n3 = cosϑ. (26)

Since ni is the unit vector two parameters (ϑ, ϕ) define
it uniquely. They may be interpreted as two angles. The
angle ϑ defines the inclination of the unit vector ni to
the x3 axis. The angle ϕ defines the inclination of its
projection on the x1x2 plane to the x1 axis. Note that the
reflections of ni in the coordinate planes are described by
the following changes of the angles ϑ and ϕ

(n1, n2, n3) ⇒ (−n1, n2, n3) if (ϑ, ϕ) ⇒ (ϑ, π − ϕ),

(n1, n2, n3) ⇒ (n1, −n2, n3) if (ϑ, ϕ) ⇒ (ϑ, −ϕ), (27)

(n1, n2, n3) ⇒ (n1, n2, −n3) if (ϑ, ϕ) ⇒ (ϑ, π − ϕ).

Substitution of (24)–(26) into the expression for t1

given in (16) leads to a sum of 81 products of trigonomet-
ric functions of ϑ and ϕ. Some terms due to symmetry of
the problem are equal to zero. The same number of prod-
ucts appears in the expressions for t2 and t3 given in (17)
and (18). Purely analytical approach to the extreme val-
ues leads to simple, but long trigonometric equations. In
practice only the numerical approach is effective.

In cubic crystals all three principal directions are
equivalent. Therefore the properties for some deforma-
tions are exactly the same, as the properties for other de-
formations. It is easy to check that the following changes
of the deformation direction

(n1, n2, n3) ⇒ (n2, n1, n3),

(n1, n2, n3) ⇒ (n1, n3, n2),

(n1, n2, n3) ⇒ (n3, n2, n1)

do not change the properties of the crystal, i.e. the
values of tk. The above discussed symmetry properties
of functions tk allow us to confine all calculations to
directions defined by the vector ni possessing non-negative
components n1, n2 and n3. The values for other vectors
ni follow from the symmetries of the considered problem.

Start with the values of sk1, sn1, sb1. They express
the linear part of the stress-deformation function for pure
shear.

Table 9
Extreme values of sn1, st1 and ξ for Cu

Value (ϑ, ϕ) (n1, n2, n3)

tn1 max 238.1 (.9541,.7854) (.577,.577.577)

m/m 220.8 (.7854,0) (.707,0,.707)

min 169.0 (0, ϕ) (0,0,1)

tt1 max 29.1 (.4454,.7854) (.305,.305,.902)

m/m 25.9 (.3927,0) (.383,0,.924)

m/m 10.9 (.8368,.4460) (.670,.320,.670)

min 0 (0, ϕ) (0,0,1)

min 0 (.7854,0) (.707,0,.707)

min 0 (.9541,.7854) (.577,.577.577)

ξ max .145 (.3933,.7854) (.271,.271,.924)

Maximum value is marked by “max”, and minimum
value by “min”. An extremum, that is neither maximum,
nor minimum is marked by “m/m” (minimax). The val-
ues of ϑ, ϕ are useful only in computations. For analysis
of the problem more useful and transparent is the direc-
tion (n1, n2, n3) given in the last column. Note that in
accord with (19) the components (n1, n2, n3) may be in-
terchanged, i.e. to (n1, n3, n2). For α = π/2 the normal
to the shearing plane and the shearing direction coincide
with the coordiate axes. If instead of a numerical value of
ϕ is written ϕ then for each ϕ is reached an extremum.

The transverse force has a minimum for all symme-
try directions (0,0,1), (1,0,1) and (1,1,1) three (and the
23 other equivalent symmetry directions). For these di-
rections stress vector is parallel to ni and the inclination
angle has a minimum equal to 0. There exist no other
minima of ξ. In order to save space the minima of ξ were
not quoted.

Similar calculations lead to the extreme values of tn2,
tt2. Their values are given in Table 10. Note that some
of the directions in Table 5 and Table 6 do not coincide.
The extreme direction for the geometrical nonlinearity
are different from that for the physical nonlinearity.

Table 10
Extreme values of sn2, st2 and ξ for Cu

Value (ϑ, ϕ) (n1, n2, n3)

tn2 min 357.1 (.9552,.7854) (.577,.577,.577)

max 331.2 (.7854,0) (.707,0,.707)

m/m 253.5 (0, ϕ) (0,0,1)

tt2 max 14.5 (.4449,.7854) (.303,.303,.903)

m/m 12.9 (.3924,0) (.382,0,.924)

m/m 5.43 (.8335,.4319) (.673,.309,.673)

min 0 (0, ϕ) (0,0,1)

min 0 (.7854,0) (.707,0,.707)

min 0 (.9552,.7854) (.577,.577,.577)

ξ max .278 (.2918,0) (.288,0,.958)

.049 (.3931,.7854) (.271,.271,.924)
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The physical nonlinearity is characterized by the data
quoted in Table 11.

Table 11
Extreme values of sn3, st3 and ξ for Cu

Value (ϑ, ϕ) (n1, n2, n3)

tn3 max −1548.7 (.784,0) (.707,0,.707)

m/m −1387.5 (.9553,.7854) (.577,.577,.577)

min −.675 (0, ϕ) (0,0,1)

tt3 max 291.2 (.3931,0) (.383,0,.924)

m/m 245.8 (.3390,.7854) (.235,.235,.943)

m/m 73.5 (.8203,.3695) (.682,.263,.682)

min 0 (0, ϕ) (0,0,1)

min 0 (.784,0) (.707,0,.707)

min 0 (.9553,.7854) (.577,.577,.577 )

ξ max .278 (.2918,0) (.288,0,.958)

All explanations given for Table 10 remain valid.
Since both sk2 and sk3 contribute to the stress pro-

portionally to ν2, important for the analysis is their sum
(sk2 + sk3). The same holds for the sums (sn2 + sn3) and
(sb2 + sb3). Table 12 gives the corresponding extremes.

Table 12
Extreme values of (sn2 + sn3), (st2 + st3) and ξ for Cu

Value (ϑ, ϕ) (n1, n2, n3)

tn2 + tn3 max −421 (0, ϕ) (0,0,1)

tn2 + tn3 m/m −1030, 3 (.9541,.7854) (.577,.577,.577)

tn2 + tn3 min −1217.5 (.7854,0) (.707,0,.707)

tt2 + tt3 max 206.21 (.4456,.7854) (.305,.305,.902)

tt2 + tt3 max 278.3 (.3938,0) (.384,0,.924)

tt2 + tt3 M/m 232.3 (.3349,.7854) (.233,.233,.944)

tt2 + tt3 min 0 (.9541,.7854) (.577,.577,.577)

η max .370 (.2730,0) (.270,0,.963)

η m/m .280 (.3930,.8022) (.266,.275,.924)

η m/m .346 (.2434,.7854) (.171,.171,.971)

η m/m .070 (.8246,.3909) (.679,.279,.679)

η min 0 (.7854,0) (.707,0,.707)

The three directions (1,0,0), (1,1,0) and (1,1,1) are
connected with the symmetry of the cube. To them
correspond extreme values of all three variables quoted
in the Tables 9–12. Other directions, e.g. the direction
(.305,.305,.902) in Table 12 is an extreme direction for
one variable only. Such directions are specific extreme
directions of the considered material.
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