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Mirror image property for the optimal solutions of two single
processor scheduling problems with due intervals determination
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Abstract. In the paper, we investigate two single processor problems, which deal with the process of negotiation between a producer and
a customer about delivery time of final products. This process is modelled by a due interval, which is a generalization of well known classical
due date and describes a time interval, in which a job should be finished. In this paper we consider two different mathematical models of due
intervals. In both considered problems we should find such a schedule of jobs and such a determination of due intervals to each job, that the
generalized cost function is minimized. The cost function is the maximum of the following three weighted parts: the maximum tardiness, the
maximum earliness and the maximum due interval size. For the first problem we proved several properties of its optimal solution and next we
show the mirror image property for both of considered problems, which helps us to provide an optimal solution for the second problem.
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1. Introduction

The paper deals with scheduling problems which model
the process of negotiation between the producer and the
customer about the delivery time of the final products.
The producer objective usually is to have the latest
time of delivering products, while the customer tries to
have them as soon as possible. The compromise of this
negotiation is a time period in which the products should
be completed by producer and available to be taken by
customer. This situation can be modelled in scheduling
problems by a due interval, which is an extension of the
classical due date and describes a time interval, in which
a job should be finished.

The extensive surveys of the results obtained for
the due date determination problems can be found in
Refs. 1–3. The various models of the due interval deter-
mination in scheduling problems with general sum-type
criterion have been considered in several papers [4–8]. In
the papers [7] and [6] the authors focused on the opti-
mal, common for all the jobs, due interval assignment in
some single and parallel processors scheduling problems,
respectively. In their model it is assumed that the size of
the due interval is a priori given. The model of due inter-
val considered in [6] and [7] have been extended in [4], [5]
and [8]. This extension concerns the size of due interval,
which is as well as its location a decision variable.

To be more precise, in this paper we consider two
scheduling problems. In the first one we consider the due
interval, called “constant due interval”, which is common
for all the jobs. In the second one we consider due
intervals, called “slack due intervals”, which are common
for all the jobs with the identical processing times. For the
considered problems, we should find a schedule of jobs,
due intervals and their locations such that their criterion
values are minimized. We minimize the cost type criterion

* e-mail: janiak@ict.pwr.wroc.pl

which is the maximum of the following three weighted
parts: the maximum tardiness, the maximum earliness
and the maximum due interval size. We prove some
properties of the optimal solutions to both problems.

The remaining part of the paper is organized as fol-
lows. In the next section, we give a precise formulation of
the considered problems. The optimal solution properties
of the first problem are presented in Section 3. Section 4
deals with the mirror image property of the considered
problems and some properties of the optimal solution
to the second problem. Some final remarks are given in
Section 5.

2. Formulation of the problems

We consider two scheduling problems (Pk and Pq), in
which there is given a set J = {1, . . . , n} of n independent
and non-preemptive jobs to be scheduled on a single
processor. At the moment, the processor can process only
one job. We assume that processor executes the jobs
without idle times. For each job its processing time pj is
given and we will consider the following two models of
the job due intervals 〈d′

j ; d′′
j 〉 (for problems Pk and Pq,

respectively):
• constant due interval — 〈d′

j = k1; d′′
j = k2〉, and

• slack due interval — 〈d′
j = pj + q1; d′′

j = pj + q2〉,
where k1, k2 (k1 � k2) and q1, q2 (q1 � q2) denote com-
mon due interval parameters for Pk and Pq, respectively.

The problems Pk and Pq consist in finding such sched-
ules π (π = {Sj : j ∈ J}, where Sj denotes the starting
moment of job j) and such values of the parameters k1,
k2 and q1, q2, respectively, for Pk and Pq, which minimize
the following criterion:

f(π, d′
j , d′′

j ) = max(A max
j∈J

Ej , max
j∈J

B(d′′
j − d′

j), C max
j∈J

Tj),

where: Ej = max(d′
j − Cj , 0), Tj = max(0, Cj − d′′

j ),
max(d′′

j − d′
j), Cj is, respectively, the earliness, the tardi-

ness, the due interval size, the completion moment of the
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job j, and A, B, C are some positive cost weights.
Finally, the criterion reduces to the following ones, for

problem Pk and Pq, respectively:

fk(π, k1, k2) = max(A max
j∈J

Ej , B(k2 − k1), C max
j∈J

Tj) (1)

and

fq(π, q1, q2) = max(A max
j∈J

Ej , B(q2 − q1), C max
j∈J

Tj). (2)

3. Optimal solution properties of problem Pk

In the sequel for a given π we assume that: Cmin(π) =
minj∈J Cj(π) and Cmax(π) = maxj∈J Cj(π).

Property 1. For a given schedule π of Pk, the
optimal values of the parameters k∗

1(π) and k∗
2(π) fulfill,

respectively, the following inequalities: k∗
1(π) 	 Cmin(π)

and k∗
2(π) � Cmax(π).

P r o o f . Assume that π is a schedule in Pk, where
the inequalities k∗

1(π) 	 Cmin(π) and k∗
2(π) � Cmax(π)

are not satisfied. There are two cases, which should be
considered for π, namely for a given value of k2 or k1

(k2 	 k1), the optimal value of k∗
1(π) or k∗

2(π) is equal to
1◦ k′

1(π) = Cmin(π) − ε or
2◦ k′

2(π) = Cmax(π) + ε, respectively, where ε is some
positive value, (ε > 0).

Ad 1◦. Let fk(π, k′
1(π), k2) and fk(π, k′′

1 (π), k2) denote
the values of the criterion (1) obtained for the values of the
parameters: k′

1(π) = Cmin(π) − ε and k′′
1 (π) = Cmin(π),

respectively. We have (a).
Analogical result we can obtain for the case 2◦.

These results contradict the assumptions that k′
1 and

k′
2 are optimal. Thus, it follows from the above consider-

ations, that the optimal values of the parameters k∗
1(π)

and k∗
2(π) should satisfy the inequalities: k∗

1(π) 	 Cmin(π)
and k∗

2(π) � Cmax(π). �

It follows from Lemma 1, that the criterion value (1)
is equal to Eq. (3), shown at the bottom of the page.

Now we prove some lemma for the following general
function h : 
3 → 
 (see that (3) is a special case of this
function):

h(u, v, w) = max(A1u, A2v, A3w) (4)

subject to:

u + v + w = A, (5)

where u, w and v are some nonnegative variables, A is
a given nonnegative constant and A1, A2 and A3 are
given nonnegative weights.

Lemma 1. If A1u = A2v = A3w, then the value of the
expression (4) is minimal and the following values of the
variables u, w, v minimize (4):

u∗ =
A2A3A

A1A2 + A1A3 + A2A3
,

v∗ =
A1A3A

A1A2 + A1A3 + A2A3
,

w∗ =
A1A2A

A1A2 + A1A3 + A2A3
. (6)

P r o o f . Let h′ denote the value of the function (4)
obtained for the following values of the variables u′, v′,
w′, for which A1u′ = A2v′ = A3w′.

Assume now that the value of at least one variable u,
w or v, let’s say u, is smaller than value u′. It follows
from the constraint (5) that in this case the value of at
least one from the remaining variable, let’s say v, has to
be greater than value v′. It means that the expression (4)
can be estimated by: h(u, v, w) = max(A1u, A2v, A3w) >
h′ = max(A1u′, A2v′, A3w′), which ends the first part of
the proof.

Basing on the above considerations and the constraint
(5), we can easily calculate u∗, v∗, w∗ (i.e. (6)) solving
the following system of equations:{

A1u∗ = A2v∗

A2v∗ = A3w∗

u∗ + v∗ + w∗ = A.

�

Let Cπ(j) and pπ(j) denote, respectively, the comple-
tion moment and the processing time of the job placed
on the position j in the schedule π.

Based on Lemma 1 and the expression (3), for the
schedule π and the optimal values of k∗

1(π) and k∗
2(π) the

criterion (1) can be reformulated as follows:

fk(π, k′
1(π), k2) = max(A max

j∈J
Ej , B(k2 − k′

1(π)), C max
j∈J

Tj) = max(A max
j∈J

(max(d′
j − Cj(π), 0)), B(k2 − k′

1(π)), C max
j∈J

Tj)

= max(A max(k′
1(π) − Cmin(π), 0), B(k2 − k′

1(π)), C max
j∈J

Tj)

= max(0, B(k2 − Cmin(π) + ε), C max
j∈J

Tj)

	 max(0, B(k2 − Cmin(π)), C max
j∈J

Tj) = fk(π, k′′
1 (π), k2). (a)

fk(π, k∗
1(π), k∗

2(π)) = max(A max
j∈J

(max(k∗
1(π) − Cj(π), 0)), B(k∗

2(π) − k∗
1(π)), C max

j∈J
(max(0, Cj(π) − k∗

2(π))))

= max(A(k∗
1(π) − Cmin(π)), B(k∗

2(π) − k∗
1(π)), C(Cmax(π) − k∗

2(π))). (3)
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fk(π, k∗
1(π), k∗

2(π))

=
ABC

AB + AC + BC


 n∑

j=1

pπ(j) − pπ(1)


 , (7)

since Cmax(π) = Cπ(n) =
∑n

j=1 pπ(j) and Cmin(π) =
Cπ(1) = pπ(1).

Some optimal solution properties for Pk, which con-
cern the optimal schedule of jobs and the optimal values
of k∗

1 and k∗
2 , are given below.

Property 2. For a given schedule π of jobs, the
optimal values of the parameters k∗

1(π) and k∗
2(π) are

equal to:

k∗
1(π) =

BC
n∑

j=1
pj + A(B + C)pπ(1)

AB + AC + BC
and

k∗
2(π) =

C(A + B)
n∑

j=1
pj + ABpπ(1)

AB + AC + BC
.

(8a)

P r o o f . Basing on Lemma 1 and the expression (3),
we have Eq. (8b), shown at the bottom of the page.

Since Cmin(π) = Cπ(1) = pπ(1) and Cmax(π) = Cπ(n) =∑n
j=1 pπ(j), thus we obtain the first formula of (8a).
In similar way we can obtain the second formula

of (8a). �

Property 3. There exists an optimal solution (i.e.
(π∗, k∗

1 , k∗
2)) to Pk, in which the job with the largest

processing time is performed as the first one.

P r o o f . It follows form (7) that the criterion value
(1) is minimal, if the job with the largest processing time
is executed on the first position. �

The optimal algorithm solving Pk can be realized in
O(n) time, since the values of the parameters k∗

1 and k∗
2

depend only on the value of the processing time of the
job which is executed on the first position of π∗, i.e., the
job with the largest processing time and the remaining
jobs can be scheduled in π∗ in an arbitrary order.

4. Mirror image of the optimal solutions to
problems Pk and Pq

In the sequel, we will use the following notation. An upper
index k and q will indicate the values of the problem Pk

and Pq parameters, respectively. Now we consider the
following mirror image property.

Theorem 1. If Aq = Ck, Bq = Bk, Cq = Ak, then the
optimal schedule of the problem Pk or Pq can be obtained

from an optimal schedule of the other problem (Pq or
Pk) by reversing the order of the jobs on the processor,
and determining the appropriate due interval parameters
from the following equations:

∑n
j=1 pj = q1 +k2 = q2 +k1.

Moreover, the optimal criterion values for both problems
are equal.

P r o o f . Assume πrev denotes a schedule, in which the
jobs are executed in the reversed order on the processor
with respect to the schedule π. It is easy to see that the
makespan value (Cmax) for both schedules is the same and
equal to Cmax =

∑n
j=1 pj . From the reversing execution

of the jobs in the schedule π it follows that for πrev we
have:

Sj(πrev) = Cmax − Sj(π) − pj for j = 1, . . . , n (9)

(see also an example given in Fig. 1).
To prove the theorem, at first we need to show that

for any π and reversing to it πrev the following equality
holds:

fk(π, k1, k2)

= max
(

Ak max
j∈J

Ek
j (π), Bk(k2 − k1), Ck max

j∈J
T k

j (π)
)

= max
(

Aq max
j∈J

Eq
j (πrev), Bq(q2 − q1)j , Cq max

j∈J
T q

j (πrev)
)

= fq(πrev, q1, q2). (10)

According to the expressions (9) and Cmax =
∑n

j=1 pj =
q1+k2 = q2+k1, we can formulate the following equations:

Eq
j (πrev) = max

(
d′q

j − Cj(πrev), 0
)

= max
(
pj + q1 − Sj(πrev) − pj , 0

)
= max

(
q1 − Sj(πrev), 0

)
=

= max
(
Cmax − k2 − Cmax + Sj(π) + pj, 0

)
= max

(
Cj(π) − k2, 0

)
= max

(
Cj(π) − d′′k

j , 0
)

= T k
j (π),

T q
j (πrev) = max

(
0, Cj(πrev) − d′′q

j

)
= max

(
0, Sj(πrev) + pj − pj − q2

)
= max

(
0, Sj(πrev) − q2

)
= max

(
0, Cmax − Sj(π) − pj − Cmax + k1

)
= max

(
0, k1 − Cj(π)

)
= max

(
0, d′k

j − Cj(π)
)

= Ek
j (π),

q2 − q1 = Cmax − k1 − (Cmax − k2) = k2 − k1.

(
u∗ =

A2A3A

A1A2 + A1A3 + A2A3

)
⇒
(

k∗
1(π) − Cmin(π) =

BC

AB + AC + BC
(Cmax(π) − Cmin(π))

)
. (8b)
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Fig. 1. Mirror image of solutions to Pk and Pq

Since Aq = Ck, Bq = Bk, Cq = Ak, then the above
equations imply that the equation (10) is satisfied (see
also Fig. 1).

Let us pass to proving, that if (π∗, k∗
1 , k∗

2) is the
optimal solution to Pk, than the corresponding solution
(π∗rev, q∗

1 , q∗
2) to Pq is also optimal, and vice versa.

Assume that (π∗, k∗
1 , k∗

2) is the optimal solution
to Pk and the equation (10) is satisfied and the so-
lution (π∗rev , q∗

1 , q∗
2) is not the optimal one to Pq.

Then, there exists a solution (π′, q′
1, q′

2) such that
fq(π′, q′

1, q′
2) < fq(π∗rev, q∗

1 , q∗
1). Observe that (π′, q′

1, q′
2)

is a solution reversed with respect to some solution
(π′rev, k′

1, k′
2) to Pk. Then, according to (10), we must

have fk(π′rev, k′
1, k′

2) = fq(π′, q′
1, q′

2) < fq(π∗rev, q∗
1 , q∗

2) =
fk(π∗, k∗

1 , k∗
2), which contradicts the optimality of (π∗, k∗

1 ,
k∗

2).
Similar result can be obtained if we assume that

(π∗rev, q∗
1 , q∗

2) is the optimal solution to Pq and the
solution (π∗, k∗

1 , k∗
2) is not the optimal one to Pk. �

Below, we present the properties of the optimal so-
lution of Pq, which concern the optimal schedule of jobs
and the optimal values of q1 and q2.

Property 4. For any schedule π of jobs in Pq, the
optimal values of the parameters q∗

1 and q∗
2 , are equal to

q∗
1(π) =

BC

(
n∑

j=1
pj − pπ(n)

)

AB + AC + BC
and

q∗
2(π) =

C (A + B)

(
n∑

j=1
pj − pπ(n)

)

AB + AC + BC
,

and there exists an optimal solution to Pq, where the job
with the largest processing time is performed as the last
one.

P r o o f . It follows immediately from Theorem 1 and
Property 2. �

The optimal algorithm solving Pq can be realized in
O(n) time, since the values of the parameters q∗

1 and
q∗

2 depend on the processing time of the job which is
executed on the last position, i.e., the job with the largest

processing time and the remaining jobs can be scheduled
in π∗ in an arbitrary order.

5. Final remarks

We considered two problems of scheduling jobs on a single
processor where a due interval should be assigned to each
job such that the maximum of the following criterion
weighted parts: the maximum tardiness, the maximum
earliness and the due interval size is minimized. We
established some properties of an optimal solution to
the considered problems. The most important result is
Theorem 1, which concerns the mirror image of the
solutions of the considered problems. It can be adopted for
an instance to the sum type criterion function. Moreover,
Theorem 1 can be also extended to the problems of
scheduling jobs on parallel processors.
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